Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Dec;54(12):2996–3002. doi: 10.1128/aem.54.12.2996-3002.1988

Test of the validity of the Poisson assumption for analysis of most-probable-number results.

C N Haas 1, B Heller 1
PMCID: PMC204417  PMID: 3223765

Abstract

A test of the validity of the Poisson assumption for sample replicates in dilution series of finite length is proposed and its properties are examined by using Monte Carlo simulation. The test is based on an examination of the number of intervals between complete sterility and complete infection in a series. The test is applied to a data set of routine influent coliform samples at the Chicago water supply intake. By this test, the data set is rejected as being drawn from a Poisson replication. Tables for direct application to a 3-dilution, 5-tube decimal series are presented, and their application is illustrated.

Full text

PDF
2998

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMITAGE P., SPICER C. C. The detection of variation in host susceptibility in dilution counting experiments. J Hyg (Lond) 1956 Sep;54(3):401–414. doi: 10.1017/s0022172400044661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHANG S. L., BERG G., BUSCH K. A., STEVENSON R. E., CLARKE N. A., KABLER P. W. Application of the most probable number method for estimating concentrations of animal viruses by the tissue culture technique. Virology. 1958 Aug;6(1):27–42. doi: 10.1016/0042-6822(58)90057-6. [DOI] [PubMed] [Google Scholar]
  3. COCHRAN W. G. Estimation of bacterial densities by means of the "most probable number". Biometrics. 1950 Jun;6(2):105–116. [PubMed] [Google Scholar]
  4. Cowell N. D., Morisetti M. D. Microbiological techniques--some statistical aspects. J Sci Food Agric. 1969 Oct;20(10):573–579. doi: 10.1002/jsfa.2740201001. [DOI] [PubMed] [Google Scholar]
  5. Eisenhart C., Wilson P. W. STATISTICAL METHODS AND CONTROL IN BACTERIOLOGY. Bacteriol Rev. 1943 Jun;7(2):57–137. doi: 10.1128/br.7.2.57-137.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. El-Shaarawi A. H., Esterby S. R., Dutka B. J. Bacterial density in water determined by poisson or negative binomial distributions. Appl Environ Microbiol. 1981 Jan;41(1):107–116. doi: 10.1128/aem.41.1.107-116.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Loyer M. W., Hamilton M. A. Interval estimation of the density of organisms using a serial-dilution experiment. Biometrics. 1984 Dec;40(4):907–916. [PubMed] [Google Scholar]
  8. MORAN P. A. The dilution assay of viruses. J Hyg (Lond) 1954 Jun;52(2):189–193. doi: 10.1017/s002217240002739x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Margolin B. H., Kaplan N., Zeiger E. Statistical analysis of the Ames Salmonella/microsome test. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3779–3783. doi: 10.1073/pnas.78.6.3779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Savage G. M., Halvorson H. O. The Effect of Culture Environment on Results Obtained with the Dilution Method of Determining Bacterial Population. J Bacteriol. 1941 Mar;41(3):355–362. doi: 10.1128/jb.41.3.355-362.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. WADLEY F. M. Limitations of the zero method of population counts. Science. 1954 May 14;119(3098):689–690. doi: 10.1126/science.119.3098.689. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES