Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1983 Mar;78(3):571–577. doi: 10.1111/j.1476-5381.1983.tb08817.x

Presynaptic alpha 2-adrenoceptor antagonism by verapamil but not by diltiazem in rabbit hypothalamic slices.

A M Galzin, S Z Langer
PMCID: PMC2044725  PMID: 6132643

Abstract

1 Rabbit hypothalamic slices prelabelled with [3H]-noradrenaline and superfused with Krebs solution were stimulated electrically at a frequency of 5 Hz. Exposure to verapamil (0.1 to 10 microM) significantly increased, in a concentration-dependent manner, the electrically-evoked overflow of tritium, without affecting the spontaneous outflow of radioactivity. 2 Exposure to diltiazem in concentrations up to 100 microM had no effect on the electrically evoked release of [3H]-noradrenaline, but increased the basal outflow of radioactivity at 10 and 100 microM. 3 The preferential alpha 2-adrenoceptor antagonist, yohimbine (0.1 microM) significantly antagonized the inhibitory effect of clonidine or adrenaline on [3H]-noradrenaline overflow elicited by electrical stimulation. Verapamil (3 microM) also antagonized this inhibitory effect of the alpha 2-adrenoceptor agonists on [3H]-noradrenaline release. In contrast to these results, exposure to diltiazem (10 microM) was ineffective in blocking the action of the alpha 2-adrenoceptor agonist. 4 These results suggest that the two Ca2+-antagonists verapamil and diltiazem differ in their ability to affect central noradrenergic neurotransmission. While verapamil is a relatively potent alpha 2-adrenoceptor antagonist, diltiazem is devoid of presynaptic alpha 2-adrenoceptor antagonist properties.

Full text

PDF
572

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
  2. Galzin A. M., Dubocovich M. L., Langer S. Z. Presynaptic inhibition by dopamine receptor agonists of noradrenergic neurotransmission in the rabbit hypothalamus. J Pharmacol Exp Ther. 1982 May;221(2):461–471. [PubMed] [Google Scholar]
  3. Göthert M., Nawroth P., Neumeyer H. Inhibitory effects of verapamil, prenylamine and D 600 on Ca2+-dependent noradrenaline release from the sympathetic nerves of isolated rabbit hearts. Naunyn Schmiedebergs Arch Pharmacol. 1979 Dec;310(1):11–19. doi: 10.1007/BF00499869. [DOI] [PubMed] [Google Scholar]
  4. Haeusler G. Differential effect of verapamil on excitation-contraction coupling in smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. J Pharmacol Exp Ther. 1972 Mar;180(3):672–682. [PubMed] [Google Scholar]
  5. Haycock J. W., White W. F., Cotman C. W. Differences in alkaline earth stimulation of neurotransmitter release from isolated brain synaptosomes. Naunyn Schmiedebergs Arch Pharmacol. 1978 Jan-Feb;301(3):175–179. doi: 10.1007/BF00507034. [DOI] [PubMed] [Google Scholar]
  6. Henry P. D. Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Am J Cardiol. 1980 Dec 1;46(6):1047–1058. doi: 10.1016/0002-9149(80)90366-5. [DOI] [PubMed] [Google Scholar]
  7. Horn J. P., McAfee D. A. Alpha-drenergic inhibition of calcium-dependent potentials in rat sympathetic neurones. J Physiol. 1980 Apr;301:191–204. doi: 10.1113/jphysiol.1980.sp013198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ichida S., Okada K., Terao M. Effect of verapamil on 45Ca uptake by synaptosomes. Jpn J Pharmacol. 1980 Apr;30(2):207–211. doi: 10.1254/jjp.30.207. [DOI] [PubMed] [Google Scholar]
  9. Langer S. Z. Presynaptic regulation of catecholamine release. Biochem Pharmacol. 1974 Jul 1;23(13):1793–1800. doi: 10.1016/0006-2952(74)90187-7. [DOI] [PubMed] [Google Scholar]
  10. Langer S. Z. Presynaptic regulation of the release of catecholamines. Pharmacol Rev. 1980 Dec;32(4):337–362. [PubMed] [Google Scholar]
  11. Nachshen D. A., Blaustein M. P. The effects of some organic "calcium antagonists" on calcium influx in presynaptic nerve terminals. Mol Pharmacol. 1979 Sep;16(2):576–586. [PubMed] [Google Scholar]
  12. Nayler W. G. Calcium antagonists. Eur Heart J. 1980 Jun;1(3):225–237. doi: 10.1093/oxfordjournals.eurheartj.a061123. [DOI] [PubMed] [Google Scholar]
  13. Nayler W. G., Thompson J. E., Jarrott B. The interaction of calcium antagonists (slow channel blockers) with myocardial alpha adrenoceptors. J Mol Cell Cardiol. 1982 Mar;14(3):185–188. doi: 10.1016/0022-2828(82)90118-3. [DOI] [PubMed] [Google Scholar]
  14. Pelayo F., Dubocovich M. L., Langer S. Z. Inhibition of neuronal uptake reduces the presynaptic effects of clonidine but not of alpha-methylnoradrenaline on the stimulation-evoked release of 3H-noradrenaline from rat occipital cortex slices. Eur J Pharmacol. 1980 Jun 13;64(2-3):143–155. doi: 10.1016/0014-2999(80)90037-0. [DOI] [PubMed] [Google Scholar]
  15. Van Meel J. C., De Jonge A., Kalkman H. O., Wilffert B., Timmermans P. B., Van Zwieten P. A. Vascular smooth muscle contraction initiated by postsynaptic alpha 2-adrenoceptor activation is induced by an influx of extracellular calcium. Eur J Pharmacol. 1981 Jan 16;69(2):205–208. doi: 10.1016/0014-2999(81)90415-5. [DOI] [PubMed] [Google Scholar]
  16. Vargas O., de Lorenzo M. D., Saldate M. C., Orrego F. Potassium-induced release of [3H] GABA and of [3H] noradrenaline from normal and reserpinized rat brain cortex slices, Differences in calcium-dependency, and in sensitivity to potassium ions. J Neurochem. 1977 Jan;28(1):165–170. doi: 10.1111/j.1471-4159.1977.tb07722.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES