Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Jun;175(11):3289–3294. doi: 10.1128/jb.175.11.3289-3294.1993

Functional studies of yeast glucokinase.

D Clifton 1, R B Walsh 1, D G Fraenkel 1
PMCID: PMC204725  PMID: 8501032

Abstract

Glucose phosphorylation capacity is known to be in excess of glucose flux in Saccharomyces cerevisiae wild type but not in a mutant strain lacking the two hexokinases but still having glucokinase. Nonetheless, we show here that in the latter strain, as in the wild type, the internal concentration of glucose is apparently low during growth on glucose and that additional glucokinase activity does not increase glucose flux. The glucokinase-dependent strain accumulates substantial amounts of glucose internally in batch culture after exhaustion of glucose, as well as from maltose. In both of these situations, low concentrations of radioactive glucose provided to the medium are used with incomplete, if any, mixing with the internal pool. Furthermore, in contrast to activity of hexokinase and other enzymes, little glucokinase activity is revealed by toluene treatment of cells. These results may point to a connection between glucose entry and its phosphorylation by glucokinase, but separate explanations for the various findings are also possible.

Full text

PDF
3294

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bañuelos M., Gancedo C. In situ study of the glycolytic pathway in Saccharomyces cerevisiae. Arch Microbiol. 1978 May 30;117(2):197–201. doi: 10.1007/BF00402308. [DOI] [PubMed] [Google Scholar]
  2. Becker J. U., Betz A. Membrane transport as controlling pacemaker of glycolysis in Saccharomyces carlsbergensis. Biochim Biophys Acta. 1972 Aug 9;274(2):584–597. doi: 10.1016/0005-2736(72)90205-2. [DOI] [PubMed] [Google Scholar]
  3. Bisson L. F., Fraenkel D. G. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730–1734. doi: 10.1073/pnas.80.6.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cirillo V. P. The role of membrane carriers in the regulation of the free glucose pool in metabolizing cells. J Protozool. 1970 May;17(2):178–181. doi: 10.1111/j.1550-7408.1970.tb02351.x. [DOI] [PubMed] [Google Scholar]
  5. Fraenkel D. G. The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase. J Biol Chem. 1968 Dec 25;243(24):6451–6457. [PubMed] [Google Scholar]
  6. Franzusoff A., Cirillo V. P. Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Jun 14;688(2):295–304. doi: 10.1016/0005-2736(82)90340-6. [DOI] [PubMed] [Google Scholar]
  7. François J., Neves M. J., Hers H. G. The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast. 1991 Aug-Sep;7(6):575–587. doi: 10.1002/yea.320070605. [DOI] [PubMed] [Google Scholar]
  8. Fuhrmann G. F., Völker B., Sander S., Potthast M. Kinetic analysis and simulation of glucose transport in plasma membrane vesicles of glucose-repressed and derepressed Saccharomyces cerevisiae cells. Experientia. 1989 Dec 1;45(11-12):1018–1023. doi: 10.1007/BF01950152. [DOI] [PubMed] [Google Scholar]
  9. Guijarro J. M., Lagunas R. Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient. J Bacteriol. 1984 Dec;160(3):874–878. doi: 10.1128/jb.160.3.874-878.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keller F., Schellenberg M., Wiemken A. Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch Microbiol. 1982 Jun;131(4):298–301. doi: 10.1007/BF00411175. [DOI] [PubMed] [Google Scholar]
  11. Lang J. M., Cirillo V. P. Glucose transport in a kinaseless Saccharomyces cerevisiae mutant. J Bacteriol. 1987 Jul;169(7):2932–2937. doi: 10.1128/jb.169.7.2932-2937.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lobo Z., Maitra P. K. Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae. Arch Biochem Biophys. 1977 Aug;182(2):639–645. doi: 10.1016/0003-9861(77)90544-6. [DOI] [PubMed] [Google Scholar]
  13. Lolkema J. S., ten Hoeve-Duurkens R. H., Dijkstra D. S., Robillard G. T. Mechanistic coupling of transport and phosphorylation activity by enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Biochemistry. 1991 Jul 9;30(27):6716–6721. doi: 10.1021/bi00241a012. [DOI] [PubMed] [Google Scholar]
  14. Londesborough J., Varimo K. Characterization of two trehalases in baker's yeast. Biochem J. 1984 Apr 15;219(2):511–518. doi: 10.1042/bj2190511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maitra P. K., Lobo Z. A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem. 1971 Jan 25;246(2):475–488. [PubMed] [Google Scholar]
  16. Nikaido H., Saier M. H., Jr Transport proteins in bacteria: common themes in their design. Science. 1992 Nov 6;258(5084):936–942. doi: 10.1126/science.1279804. [DOI] [PubMed] [Google Scholar]
  17. Ongjoco R., Szkutnicka K., Cirillo V. P. Glucose transport in vesicles reconstituted from Saccharomyces cerevisiae membranes and liposomes. J Bacteriol. 1987 Jul;169(7):2926–2931. doi: 10.1128/jb.169.7.2926-2931.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paschoalin V. M., Costa-Carvalho V. L., Panek A. D. Further evidence for the alternative pathway of trehalose synthesis linked to maltose utilization in Saccharomyces. Curr Genet. 1986;10(10):725–731. doi: 10.1007/BF00405094. [DOI] [PubMed] [Google Scholar]
  19. Scarborough G. A. Binding energy, conformational change, and the mechanism of transmembrane solute movements. Microbiol Rev. 1985 Sep;49(3):214–231. doi: 10.1128/mr.49.3.214-231.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schuddemat J., Van Leeuwen C. C., Plijter J. J., Van den Broek P. J., Van Steveninck J. Determination of the role of polyphosphate in transport-coupled phosphorylation in the yeast Saccharomyces cerevisiae. Antonie Van Leeuwenhoek. 1990 Apr;57(3):159–164. doi: 10.1007/BF00403950. [DOI] [PubMed] [Google Scholar]
  21. Sáez M. J., Lagunas R. Determination of intermediary metabolites in yeast. Critical examination of the effect of sampling conditions and recommendations for obtaining true levels. Mol Cell Biochem. 1976 Nov 30;13(2):73–78. doi: 10.1007/BF01837056. [DOI] [PubMed] [Google Scholar]
  22. Ter Kuile B. H., Opperdoes F. R. Glucose uptake by Trypanosoma brucei. Rate-limiting steps in glycolysis and regulation of the glycolytic flux. J Biol Chem. 1991 Jan 15;266(2):857–862. [PubMed] [Google Scholar]
  23. Vojtek A. B., Fraenkel D. G. Phosphorylation of yeast hexokinases. Eur J Biochem. 1990 Jun 20;190(2):371–375. doi: 10.1111/j.1432-1033.1990.tb15585.x. [DOI] [PubMed] [Google Scholar]
  24. Walsh R. B., Clifton D., Horak J., Fraenkel D. G. Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression. Genetics. 1991 Jul;128(3):521–527. doi: 10.1093/genetics/128.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Walsh R. B., Kawasaki G., Fraenkel D. G. Cloning of genes that complement yeast hexokinase and glucokinase mutants. J Bacteriol. 1983 May;154(2):1002–1004. doi: 10.1128/jb.154.2.1002-1004.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Winkler K., Kienle I., Burgert M., Wagner J. C., Holzer H. Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett. 1991 Oct 21;291(2):269–272. doi: 10.1016/0014-5793(91)81299-n. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES