Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Jun;175(11):3414–3421. doi: 10.1128/jb.175.11.3414-3421.1993

In Azotobacter vinelandii hydrogenase, substitution of serine for the cysteine residues at positions 62, 65, 294, and 297 in the small (HoxK) subunit affects H2 oxidation [corrected]

L A Sayavedra-Soto 1, D J Arp 1
PMCID: PMC204740  PMID: 8501046

Abstract

The essential role of the small (HoxK) subunit of hydrogenase of Azotobacter vinelandii in H2 oxidation was established. This was achieved by modification of the two Cys-X2-Cys amino acid motifs at the N and C termini of the HoxK subunit (Cys-62, -65, -294, and -297). The Cys codons were individually mutated to Ser codons. Modifications in these two motifs resulted in loss of hydrogenase activity. At the N terminus, the mutations of the codons for the motif Cys-62-Thr-Cys-64-Cys-65 decreased the activity of hydrogenase to levels no higher than 30% of those of the parental strain. H2 oxidation with the alternate electron acceptors methylene blue and benzyl viologen was decreased. H2 evolution and exchange activities were also affected. Cys-64 possibly substitutes for either Cys-62 or Cys-65, allowing for partial activity. Mutation of the codons for Cys-294 and Cys-297 to Ser codons resulted in no hydrogenase activity. The results are consistent with alterations of the ligands of FeS clusters in the HoxK subunit of hydrogenase [corrected].

Full text

PDF
3414

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arp D. J. Rhizobium japonicum hydrogenase: purification to homogeneity from soybean nodules, and molecular characterization. Arch Biochem Biophys. 1985 Mar;237(2):504–512. doi: 10.1016/0003-9861(85)90303-0. [DOI] [PubMed] [Google Scholar]
  2. Beinert H., Kennedy M. C. 19th Sir Hans Krebs lecture. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochem. 1989 Dec 8;186(1-2):5–15. doi: 10.1111/j.1432-1033.1989.tb15170.x. [DOI] [PubMed] [Google Scholar]
  3. Berg J. M. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986 Apr 25;232(4749):485–487. doi: 10.1126/science.2421409. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brigle K. E., Setterquist R. A., Dean D. R., Cantwell J. S., Weiss M. C., Newton W. E. Site-directed mutagenesis of the nitrogenase MoFe protein of Azotobacter vinelandii. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7066–7069. doi: 10.1073/pnas.84.20.7066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dreyer J. L. Isolation and biochemical characterization of maleic-acid hydratase, an iron-requiring hydro-lyase. Eur J Biochem. 1985 Jul 1;150(1):145–154. doi: 10.1111/j.1432-1033.1985.tb09000.x. [DOI] [PubMed] [Google Scholar]
  7. Eidsness M. K., Scott R. A., Prickril B. C., DerVartanian D. V., Legall J., Moura I., Moura J. J., Peck H. D., Jr Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus. Proc Natl Acad Sci U S A. 1989 Jan;86(1):147–151. doi: 10.1073/pnas.86.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Francis K., Patel P., Wendt J. C., Shanmugam K. T. Purification and characterization of two forms of hydrogenase isoenzyme 1 from Escherichia coli. J Bacteriol. 1990 Oct;172(10):5750–5757. doi: 10.1128/jb.172.10.5750-5757.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gogotov I. N. Relationships in hydrogen metabolism between hydrogenase and nitrogenase in phototrophic bacteria. Biochimie. 1978;60(3):267–275. doi: 10.1016/s0300-9084(78)80823-2. [DOI] [PubMed] [Google Scholar]
  10. Hatchikian E. C., Bruschi M., Le Gall J. Characterization of the periplasmic hydrogenase from Desulfovibrio gigas. Biochem Biophys Res Commun. 1978 May 30;82(2):451–461. doi: 10.1016/0006-291x(78)90896-3. [DOI] [PubMed] [Google Scholar]
  11. He S. H., Teixeira M., LeGall J., Patil D. S., Moura I., Moura J. J., DerVartanian D. V., Huynh B. H., Peck H. D., Jr EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel. J Biol Chem. 1989 Feb 15;264(5):2678–2682. [PubMed] [Google Scholar]
  12. Hidalgo E., Palacios J. M., Murillo J., Ruiz-Argüeso T. Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J Bacteriol. 1992 Jun;174(12):4130–4139. doi: 10.1128/jb.174.12.4130-4139.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hyman M. R., Seefeldt L. C., Arp D. J. Aerobic, inactive forms of Azotobacter vinelandii hydrogenase: activation kinetics and insensitivity to C2H2 inhibition. Biochim Biophys Acta. 1988 Nov 2;957(1):91–96. doi: 10.1016/0167-4838(88)90160-4. [DOI] [PubMed] [Google Scholar]
  14. Kuchta R. D., Hanson G. R., Holmquist B., Abeles R. H. Fe-S centers in lactyl-CoA dehydratase. Biochemistry. 1986 Nov 18;25(23):7301–7307. doi: 10.1021/bi00371a009. [DOI] [PubMed] [Google Scholar]
  15. Leclerc M., Colbeau A., Cauvin B., Vignais P. M. Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus. Mol Gen Genet. 1988 Sep;214(1):97–107. doi: 10.1007/BF00340186. [DOI] [PubMed] [Google Scholar]
  16. Leyva A., Palacios J. M., Murillo J., Ruiz-Argüeso T. Genetic organization of the hydrogen uptake (hup) cluster from Rhizobium leguminosarum. J Bacteriol. 1990 Mar;172(3):1647–1655. doi: 10.1128/jb.172.3.1647-1655.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li C., Peck H. D., Jr, LeGall J., Przybyla A. E. Cloning, characterization, and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFe]hydrogenase of Desulfovibrio gigas. DNA. 1987 Dec;6(6):539–551. doi: 10.1089/dna.1987.6.539. [DOI] [PubMed] [Google Scholar]
  18. Martín A. E., Burgess B. K., Stout C. D., Cash V. L., Dean D. R., Jensen G. M., Stephens P. J. Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: [Fe-S] cluster-driven protein rearrangement. Proc Natl Acad Sci U S A. 1990 Jan;87(2):598–602. doi: 10.1073/pnas.87.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
  20. Menon A. L., Mortenson L. E., Robson R. L. Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. J Bacteriol. 1992 Jul;174(14):4549–4557. doi: 10.1128/jb.174.14.4549-4557.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Menon A. L., Stults L. W., Robson R. L., Mortenson L. E. Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii. Gene. 1990 Nov 30;96(1):67–74. doi: 10.1016/0378-1119(90)90342-o. [DOI] [PubMed] [Google Scholar]
  22. Menon N. K., Peck H. D., Jr, Gall J. L., Przybyla A. E. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus. J Bacteriol. 1987 Dec;169(12):5401–5407. doi: 10.1128/jb.169.12.5401-5407.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Menon N. K., Robbins J., Peck H. D., Jr, Chatelus C. Y., Choi E. S., Przybyla A. E. Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames. J Bacteriol. 1990 Apr;172(4):1969–1977. doi: 10.1128/jb.172.4.1969-1977.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morrison D. L., Magargal L. E., Ehrlich D. R., Goldberg R. E., Robb-Doyle E. Review of choroidal osteoma: successful krypton red laser photocoagulation of an associated subretinal neovascular membrane involving the fovea. Ophthalmic Surg. 1987 Apr;18(4):299–303. [PubMed] [Google Scholar]
  25. Nivière V., Wong S. L., Voordouw G. Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein. J Gen Microbiol. 1992 Oct;138(10):2173–2183. doi: 10.1099/00221287-138-10-2173. [DOI] [PubMed] [Google Scholar]
  26. Przybyla A. E., Robbins J., Menon N., Peck H. D., Jr Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev. 1992 Feb;8(2):109–135. doi: 10.1111/j.1574-6968.1992.tb04960.x. [DOI] [PubMed] [Google Scholar]
  27. Reeve J. N., Beckler G. S. Conservation of primary structure in prokaryotic hydrogenases. FEMS Microbiol Rev. 1990 Dec;7(3-4):419–424. doi: 10.1111/j.1574-6968.1990.tb04947.x. [DOI] [PubMed] [Google Scholar]
  28. Sayavedra-Soto L. A., Arp D. J. The hoxZ gene of the Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase. J Bacteriol. 1992 Aug;174(16):5295–5301. doi: 10.1128/jb.174.16.5295-5301.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sayavedra-Soto L. A., Powell G. K., Evans H. J., Morris R. O. Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8395–8399. doi: 10.1073/pnas.85.22.8395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schink B., Schlegel H. G. The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification, and biochemical properties. Biochim Biophys Acta. 1979 Apr 12;567(2):315–324. doi: 10.1016/0005-2744(79)90117-7. [DOI] [PubMed] [Google Scholar]
  31. Seefeldt L. C., Arp D. J. Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing alpha beta dimer. Biochimie. 1986 Jan;68(1):25–34. doi: 10.1016/s0300-9084(86)81064-1. [DOI] [PubMed] [Google Scholar]
  32. Sun J. H., Arp D. J. Aerobically purified hydrogenase from Azotobacter vinelandii: activity, activation, and spectral properties. Arch Biochem Biophys. 1991 Jun;287(2):225–233. doi: 10.1016/0003-9861(91)90411-b. [DOI] [PubMed] [Google Scholar]
  33. Sun J. H., Hyman M. R., Arp D. J. Acetylene inhibition of Azotobacter vinelandii hydrogenase: acetylene binds tightly to the large subunit. Biochemistry. 1992 Mar 31;31(12):3158–3165. doi: 10.1021/bi00127a016. [DOI] [PubMed] [Google Scholar]
  34. Voordouw G., Menon N. K., LeGall J., Choi E. S., Peck H. D., Jr, Przybyla A. E. Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus. J Bacteriol. 1989 May;171(5):2894–2899. doi: 10.1128/jb.171.5.2894-2899.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES