Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Jul;175(13):4176–4185. doi: 10.1128/jb.175.13.4176-4185.1993

Sequence, transcriptional, and functional analyses of the valine (branched-chain amino acid) dehydrogenase gene of Streptomyces coelicolor.

L Tang 1, C R Hutchinson 1
PMCID: PMC204847  PMID: 8320231

Abstract

The gene encoding the valine (branched-chain amino acid) dehydrogenase (Vdh) from Streptomyces coelicolor has been characterized as follows. The vdh gene was identified by hybridization to a specific oligodeoxynucleotide that was synthesized on the basis of the N-terminal amino acid sequence of purified Vdh. Nucleotide sequence analysis predicts that the vdh gene contains a 364-amino-acid open reading frame that should produce a 38,305-M(r) protein. The deduced amino acid sequence of the Vdh protein is significantly similar to those of several other amino acid dehydrogenases, especially the leucine and phenylalanine dehydrogenases from Bacillus spp. The vdh gene is apparently transcribed from a single major transcriptional start point, separated by only 8 bp from the 5' end of a divergent transcript and located 63 bp upstream from the vdh translational start point. Mutants with a disrupted vdh gene have no detectable Vdh activity and have lost the ability to grow on valine, leucine, or isoleucine as the sole nitrogen source. This vdh mutation does not significantly affect growth or actinorhodin production in a minimal medium, yet the addition of 0.2% L-valine to the medium provokes approximately 32 and 80% increases in actinorhodin production in vdh+ and vdh strains, respectively.

Full text

PDF
4185

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bibb M. J., Cohen S. N. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet. 1982;187(2):265–277. doi: 10.1007/BF00331128. [DOI] [PubMed] [Google Scholar]
  2. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  3. Bibb M. J., Jones G. H., Joseph R., Buttner M. J., Ward J. M. The agarase gene (dag A) of Streptomyces coelicolor A3(2): affinity purification and characterization of the cloned gene product. J Gen Microbiol. 1987 Aug;133(8):2089–2096. doi: 10.1099/00221287-133-8-2089. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher S. H., Wray L. V., Jr Regulation of glutamine synthetase in Streptomyces coelicolor. J Bacteriol. 1989 May;171(5):2378–2383. doi: 10.1128/jb.171.5.2378-2383.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hahn D. R., Solenberg P. J., Baltz R. H. Tn5099, a xylE promoter probe transposon for Streptomyces spp. J Bacteriol. 1991 Sep;173(17):5573–5577. doi: 10.1128/jb.173.17.5573-5577.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoshino T., Kose K. Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes. J Bacteriol. 1990 Oct;172(10):5540–5543. doi: 10.1128/jb.172.10.5540-5543.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaneda T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev. 1991 Jun;55(2):288–302. doi: 10.1128/mr.55.2.288-302.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Massey L. K., Sokatch J. R., Conrad R. S. Branched-chain amino acid catabolism in bacteria. Bacteriol Rev. 1976 Mar;40(1):42–54. doi: 10.1128/br.40.1.42-54.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nagata S., Tanizawa K., Esaki N., Sakamoto Y., Ohshima T., Tanaka H., Soda K. Gene cloning and sequence determination of leucine dehydrogenase from Bacillus stearothermophilus and structural comparison with other NAD(P)+-dependent dehydrogenases. Biochemistry. 1988 Dec 13;27(25):9056–9062. doi: 10.1021/bi00425a026. [DOI] [PubMed] [Google Scholar]
  12. Navarrete R. M., Vara J. A., Hutchinson C. R. Purification of an inducible L-valine dehydrogenase of Streptomyces coelicolor A3(2). J Gen Microbiol. 1990 Feb;136(2):273–281. doi: 10.1099/00221287-136-2-273. [DOI] [PubMed] [Google Scholar]
  13. Neal R. J., Chater K. F. Bidirectional promoter and terminator regions bracket mmr, a resistance gene embedded in the Streptomyces coelicolor A3(2) gene cluster encoding methylenomycin production. Gene. 1991 Apr;100:75–83. doi: 10.1016/0378-1119(91)90352-c. [DOI] [PubMed] [Google Scholar]
  14. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem. 1985 Mar 10;260(5):2605–2608. [PubMed] [Google Scholar]
  15. Okazaki N., Hibino Y., Asano Y., Ohmori M., Numao N., Kondo K. Cloning and nucleotide sequencing of phenylalanine dehydrogenase gene of Bacillus sphaericus. Gene. 1988 Mar 31;63(2):337–341. doi: 10.1016/0378-1119(88)90537-9. [DOI] [PubMed] [Google Scholar]
  16. Omura S., Taki A., Matsuda K., Tanaka Y. Ammonium ions suppress the amino acid metabolism involved in the biosynthesis of protylonolide in a mutant of Streptomyces fradiae. J Antibiot (Tokyo) 1984 Nov;37(11):1362–1369. doi: 10.7164/antibiotics.37.1362. [DOI] [PubMed] [Google Scholar]
  17. Omura S., Tsuzuki K., Tanaka Y., Sakakibara H., Aizawa M., Lukacs G. Valine as a precursor of n-butyrate unit in the biosynthesis of macrolide aglycone. J Antibiot (Tokyo) 1983 May;36(5):614–616. doi: 10.7164/antibiotics.36.614. [DOI] [PubMed] [Google Scholar]
  18. Piszkiewicz D., Landon M., Smith E. L. Bovine liver flutamate dehydrogenase. Sequence of a hexadecapeptide containing a lysyl residue reactive with pyridoxal 5'-phosphate. J Biol Chem. 1970 May 25;245(10):2622–2626. [PubMed] [Google Scholar]
  19. Priestley N. D., Robinson J. A. Purification and catalytic properties of L-valine dehydrogenase from Streptomyces cinnamonensis. Biochem J. 1989 Aug 1;261(3):853–861. doi: 10.1042/bj2610853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sherman M. M., Yue S., Hutchinson C. R. Biosynthesis of lasalocid A. Metabolic interrelationships of carboxylic acid precursors and polyether antibiotics. J Antibiot (Tokyo) 1986 Aug;39(8):1135–1143. doi: 10.7164/antibiotics.39.1135. [DOI] [PubMed] [Google Scholar]
  21. Smith J. M., Daum H. A., 3rd Nucleotide sequence of the purM gene encoding 5'-phosphoribosyl-5-aminoimidazole synthetase of Escherichia coli K12. J Biol Chem. 1986 Aug 15;261(23):10632–10636. [PubMed] [Google Scholar]
  22. Stein D. S., Kendall K. J., Cohen S. N. Identification and analysis of transcriptional regulatory signals for the kil and kor loci of Streptomyces plasmid pIJ101. J Bacteriol. 1989 Nov;171(11):5768–5775. doi: 10.1128/jb.171.11.5768-5775.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Strauch E., Takano E., Baylis H. A., Bibb M. J. The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol. 1991 Feb;5(2):289–298. doi: 10.1111/j.1365-2958.1991.tb02109.x. [DOI] [PubMed] [Google Scholar]
  24. Sykes P. J., Burns G., Menard J., Hatter K., Sokatch J. R. Molecular cloning of genes encoding branched-chain keto acid dehydrogenase of Pseudomonas putida. J Bacteriol. 1987 Apr;169(4):1619–1625. doi: 10.1128/jb.169.4.1619-1625.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol. 1992 Oct;6(19):2797–2804. doi: 10.1111/j.1365-2958.1992.tb01459.x. [DOI] [PubMed] [Google Scholar]
  26. Vancura A., Vancurová I., Volc J., Fussey S. P., Flieger M., Neuzil J., Marsálek J., Behal V. Valine dehydrogenase from Streptomyces fradiae: purification and properties. J Gen Microbiol. 1988 Dec;134(12):3213–3219. doi: 10.1099/00221287-134-12-3213. [DOI] [PubMed] [Google Scholar]
  27. Vancurová I., Vancura A., Volc J., Neuzil J., Flieger M., Basarová G., Behal V. Isolation and characterization of valine dehydrogenase from Streptomyces aureofaciens. J Bacteriol. 1988 Nov;170(11):5192–5196. doi: 10.1128/jb.170.11.5192-5196.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES