Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Jul;175(13):4263–4265. doi: 10.1128/jb.175.13.4263-4265.1993

Uptake of galacturonic acid in Erwinia chrysanthemi EC16.

M J San Francisco 1, R W Keenan 1
PMCID: PMC204860  PMID: 8320243

Abstract

Uptake of [14C]galacturonic acid in Erwinia chrysanthemi was found to be stimulated during growth on pectin and its degradation products, saturated digalacturonic acid and galacturonic acid. Cells isolated from macerated potato tissue also showed increased levels of uptake activity for this molecule compared with those showed by glycerol-grown cells. Uptake was found to be an active process, and it displayed saturation kinetics. An Escherichia coli galacturonic acid transport mutant harboring the E. chrysanthemi exuT gene(s) for galacturonic acid uptake was able to transport galacturonic acid but unable to take up the dimer [3H]digalacturonic acid.

Full text

PDF
4264

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chatterjee A. K., Starr M. P. Genetics of Erwinia species. Annu Rev Microbiol. 1980;34:645–676. doi: 10.1146/annurev.mi.34.100180.003241. [DOI] [PubMed] [Google Scholar]
  2. Hugouvieux-Cotte-Pattat N., Quesneau Y., Robert-Baudouy J. Aldohexuronate transport system in Erwinia carotovora. J Bacteriol. 1983 May;154(2):663–668. doi: 10.1128/jb.154.2.663-668.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. Hexuronate catabolism in Erwinia chrysanthemi. J Bacteriol. 1987 Mar;169(3):1223–1231. doi: 10.1128/jb.169.3.1223-1231.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Keen N. T., Dahlbeck D., Staskawicz B., Belser W. Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. J Bacteriol. 1984 Sep;159(3):825–831. doi: 10.1128/jb.159.3.825-831.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nemoz G., Robert-Baudouy J., Stoeber F. Physiological and genetic regulation of the aldohexuronate transport system in Escherichia coli. J Bacteriol. 1976 Aug;127(2):706–718. doi: 10.1128/jb.127.2.706-718.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  7. Van Gijsegem F., Toussaint A. In vivo cloning of Erwinia carotovora genes involved in the catabolism of hexuronates. J Bacteriol. 1983 Jun;154(3):1227–1235. doi: 10.1128/jb.154.3.1227-1235.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES