Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Jan;176(2):460–468. doi: 10.1128/jb.176.2.460-468.1994

CDP-6-deoxy-delta 3,4-glucoseen reductase from Yersinia pseudotuberculosis: enzyme purification and characterization of the cloned gene.

S F Lo 1, V P Miller 1, Y Lei 1, J S Thorson 1, H W Liu 1, J L Schottel 1
PMCID: PMC205070  PMID: 8288541

Abstract

The 3,6-dideoxyhexoses, usually confined to the cell wall lipopolysaccharide of gram-negative bacteria, are essential to serological specificity and are formed via a complex biosynthetic pathway beginning with CDP-D-hexoses. In particular, the biosynthesis of CDP-ascarylose, one of the naturally occurring 3,6-dideoxyhexoses, consists of five enzymatic steps, with CDP-6-deoxy-delta 3,4-glucoseen reductase (E3) participating as the key enzyme in this catalysis. This enzyme has been previously purified from Yersinia pseudotuberculosis by an unusual procedure (protocol I) including a trypsin digestion step (O. Han, V.P. Miller, and H.-W. Liu, J. Biol. Chem. 265:8033-8041, 1990). However, the cloned gene showed disparity with the expected gene characteristics, and upon expression, the resulting gene product exhibited no E3 activity. These findings strongly suggested that the protein isolated by protocol I may have been misidentified as E3. A reinvestigation of the purification protocol produced a new and improved procedure (protocol II) consisting of DEAE-Sephacel, phenyl-Sepharose, Cibacron blue A, and Sephadex G-100 chromatography, which efficiently yielded a new homogeneous enzyme composed of a single polypeptide with a molecular weight of 39,000. This highly purified protein had a specific activity nearly 8,000-fold higher than that of cell lysates, and more importantly, the corresponding gene (ascD) was found to be part of the ascarylose biosynthetic cluster. Presented are the identification and confirmation of the E3 gene through cloning and overexpression and the culminating purification and unambiguous assignment of homogeneous E3. The nucleotide and translated amino acid sequences of the genuine E3 are also presented.

Full text

PDF
460

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brutlag D. L., Dautricourt J. P., Maulik S., Relph J. Improved sensitivity of biological sequence database searches. Comput Appl Biosci. 1990 Jul;6(3):237–245. doi: 10.1093/bioinformatics/6.3.237. [DOI] [PubMed] [Google Scholar]
  4. CYNKIN M. A., ASHWELL G. Estimation of 3-deoxy sugars by means of the malonaldehyde-thiobarbituric acid reaction. Nature. 1960 Apr 9;186:155–156. doi: 10.1038/186155a0. [DOI] [PubMed] [Google Scholar]
  5. Gonzalez-Porque P., Strominger J. L. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. VI. Purification to homogeneity and some properties of cytidine diphosphate-D-glucose oxidoreductase, enzyme E 1 and enzyme E 3 . J Biol Chem. 1972 Nov 10;247(21):6748–6756. [PubMed] [Google Scholar]
  6. HEATH E. C., ELBEIN A. D. The enzymatic synthesis of guanosine diphosphate colitose by a mutant strain of Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1209–1216. doi: 10.1073/pnas.48.7.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Han O., Miller V. P., Liu H. W. Mechanistic studies of the biosynthesis of 3,6-dideoxyhexoses in Yersinia pseudotuberculosis. Purification and characterization of CDP-6-deoxy-delta 3,4-glucoseen reductase based on its NADH:dichlorophenolindolphenol oxidoreductase activity. J Biol Chem. 1990 May 15;265(14):8033–8041. [PubMed] [Google Scholar]
  8. Hanessian S. Deoxy sugars. Adv Carbohydr Chem Biochem. 1966;21:143–207. doi: 10.1016/s0096-5332(08)60317-3. [DOI] [PubMed] [Google Scholar]
  9. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  10. Jiang X. M., Neal B., Santiago F., Lee S. J., Romana L. K., Reeves P. R. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol. 1991 Mar;5(3):695–713. doi: 10.1111/j.1365-2958.1991.tb00741.x. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lowe C. R., Trayer I. P., Trayer H. R. Use of differently immobilized nucleotides for binding NAD+-dependent dehydrogenases. Methods Enzymol. 1980;66:192–208. doi: 10.1016/0076-6879(80)66459-3. [DOI] [PubMed] [Google Scholar]
  14. Lüderitz O., Staub A. M., Westphal O. Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev. 1966 Mar;30(1):192–255. doi: 10.1128/br.30.1.192-255.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matsuhashi S., Matsuhashi M., Strominger J. L. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. I. Over-all reactions. J Biol Chem. 1966 Sep 25;241(18):4267–4274. [PubMed] [Google Scholar]
  16. Miller V. P., Thorson J. S., Ploux O., Lo S. F., Liu H. W. Cofactor characterization and mechanistic studies of CDP-6-deoxy-delta 3,4-glucoseen reductase: exploration into a novel enzymatic C-O bond cleavage event. Biochemistry. 1993 Nov 9;32(44):11934–11942. doi: 10.1021/bi00095a025. [DOI] [PubMed] [Google Scholar]
  17. NAUTA W. J. H., GYGAX P. A. Silver impregnation of degenerating axon terminals in the central nervous system: (1) Technic. (2) Chemical notes. Stain Technol. 1951 Jan;26(1):5–11. doi: 10.3109/10520295109113170. [DOI] [PubMed] [Google Scholar]
  18. O'Reilly J. E. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim Biophys Acta. 1973 Apr 5;292(3):509–515. doi: 10.1016/0005-2728(73)90001-7. [DOI] [PubMed] [Google Scholar]
  19. OKAZAKI R., OKAZAKIT, STROMINGER J. L., MICHELSON A. M. Thymidine diphosphate 4-keto-6-deoxy-d-glucose, an intermediate in thymidine diphosphate L-rhamnose synthesis in Escherichia coli strains. J Biol Chem. 1962 Oct;237:3014–3026. [PubMed] [Google Scholar]
  20. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  21. Rubenstein P. A., Strominger J. L. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. 8. Mechanistic roles of enzyme E-1 and pyridoxamine 5'-phosphate in the formation of cytidine diphosphate-4-keto-3,6-dideoxy-D-glucose from cytidine diphosphate-4-keto-6-deoxy-D-glucose. J Biol Chem. 1974 Jun 25;249(12):3776–3781. [PubMed] [Google Scholar]
  22. Rubenstein P. A., Strominger J. L. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. 8. Studies of the properties of E3 and its role in the formation of cytidine diphosphate-4-keto-3,6-dideoxyglucose. J Biol Chem. 1974 Jun 25;249(12):3782–3788. [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sullivan F. X., Shames S. L., Walsh C. T. Expression of Trypanosoma congolense trypanothione reductase in Escherichia coli: overproduction, purification, and characterization. Biochemistry. 1989 Jun 13;28(12):4986–4992. doi: 10.1021/bi00438a013. [DOI] [PubMed] [Google Scholar]
  25. Vesterberg O. Staining of protein zones after isoelectric focusing in polyacrylamide gels. Biochim Biophys Acta. 1971 Aug 27;243(2):345–348. doi: 10.1016/0005-2795(71)90094-8. [DOI] [PubMed] [Google Scholar]
  26. WARAVDEKAR V. S., SASLAW L. D. A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehyde-thiobarbituric acid reaction. J Biol Chem. 1959 Aug;234(8):1945–1950. [PubMed] [Google Scholar]
  27. Weigel T. M., Liu L. D., Liu H. W. Mechanistic studies of the biosynthesis of 3,6-dideoxyhexoses in Yersinia pseudotuberculosis: purification and characterization of CDP-4-keto-6-deoxy-D-glucose-3-dehydrase. Biochemistry. 1992 Feb 25;31(7):2129–2139. doi: 10.1021/bi00122a034. [DOI] [PubMed] [Google Scholar]
  28. Weigel T. M., Miller V. P., Liu H. W. Mechanistic and stereochemical studies of a unique dehydration catalyzed by CDP-4-keto-6-deoxy-D-glucose-3-dehydrase: a pyridoxamine 5'-phosphate dependent enzyme isolated from Yersinia pseudotuberculosis. Biochemistry. 1992 Feb 25;31(7):2140–2147. doi: 10.1021/bi00122a035. [DOI] [PubMed] [Google Scholar]
  29. Yu Y., Russell R. N., Thorson J. S., Liu L. D., Liu H. W. Mechanistic studies of the biosynthesis of 3,6-dideoxyhexoses in Yersinia pseudotuberculosis. Purification and stereochemical analysis of CDP-D-glucose oxidoreductase. J Biol Chem. 1992 Mar 25;267(9):5868–5875. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES