Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Jan;174(1):155–160. doi: 10.1128/jb.174.1.155-160.1992

In vitro repair of double-strand breaks accompanied by recombination in bacteriophage T7 DNA.

W Masker 1
PMCID: PMC205689  PMID: 1309515

Abstract

A double-strand break in a bacteriophage T7 genome significantly reduced the ability of that DNA to produce viable phage when the DNA was incubated in an in vitro DNA replication and packaging system. When a homologous piece of T7 DNA (either a restriction fragment or T7 DNA cloned into a plasmid) that was by itself unable to form a complete phage was included in the reaction, the break was repaired to the extent that many more viable phage were produced. Moreover, repair could be completed even when a gap of about 900 nucleotides was put in the genome by two nearby restriction cuts. The repair was accompanied by acquisition of a genetic marker that was present only on the restriction fragment or on the T7 DNA cloned into a plasmid. These data are interpreted in light of the double-strand gap repair mode of recombination.

Full text

PDF
158

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dunn J. J., Studier F. W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
  2. Hausmann R., Gomez B., Moody B. Physiological and genetic aspects of abortive infection of a Shigella sonnei strain by coliphage T7. J Virol. 1968 Apr;2(4):335–345. doi: 10.1128/jvi.2.4.335-345.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hinkle D. C., Richardson C. C. Bacteriophage T7 deoxyribonucleic acid replication in vitro. Requirements for deoxyribonucleic acid synthesis and characterization of the product. J Biol Chem. 1974 May 10;249(9):2974–2980. [PubMed] [Google Scholar]
  4. Kerr C., Sadowski P. D. Gene 6 exonuclease of bacteriophage T7. II. Mechanism of the reaction. J Biol Chem. 1972 Jan 10;247(1):311–318. [PubMed] [Google Scholar]
  5. Kerr C., Sadowski P. D. Packaging and maturation of DNA of bacteriophage T7 in vitro. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3545–3549. doi: 10.1073/pnas.71.9.3545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kerr C., Sadowski P. D. The involvement of genes 3,4,5 and 6 in genetic recombination in bacteriophage T7. Virology. 1975 May;65(1):281–285. doi: 10.1016/0042-6822(75)90031-8. [DOI] [PubMed] [Google Scholar]
  7. Kuemmerle N. B., Masker W. E. In vitro packaging of UV radiation-damaged DNA from bacteriophage T7. J Virol. 1977 Sep;23(3):509–516. doi: 10.1128/jvi.23.3.509-516.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee D., Sadowski P. D. In vitro recombination of bacteriophage T7 DNA detected by a direct physical assay. J Virol. 1983 Dec;48(3):647–653. doi: 10.1128/jvi.48.3.647-653.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee D., Vetter D., Beatty L., Sadowski P. In vitro recombination of bacteriophage T7 DNA: further characterization of the reaction using plasmid DNA. Can J Biochem Cell Biol. 1985 Apr;63(4):243–248. doi: 10.1139/o85-035. [DOI] [PubMed] [Google Scholar]
  10. Lee M., Miller R. C., Jr, Scraba D., Paetkau V. The essential role of bacteriophage T7 endonuclease (gene 3) in molecular recombination. J Mol Biol. 1976 Jul 15;104(4):883–888. doi: 10.1016/0022-2836(76)90189-3. [DOI] [PubMed] [Google Scholar]
  11. Lee M., Miller R. C., Jr T7 exonuclease (gene 6) is necessary for molecular recombination of bacteriophage T7. J Virol. 1974 Nov;14(5):1040–1048. doi: 10.1128/jvi.14.5.1040-1048.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Masker W. E. In vitro packaging of bacteriophage T7 DNA requires ATP. J Virol. 1982 Jul;43(1):365–367. doi: 10.1128/jvi.43.1.365-367.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Masker W. E., Kuemmerle N. B., Allison D. P. In vitro packaging of bacteriophate T7 DNA synthesized in vitro. J Virol. 1978 Jul;27(1):149–163. doi: 10.1128/jvi.27.1.149-163.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Masker W. E., Kuemmerle N. B. In vitro recombination of bacteriophage T7 DNA damaged by UV radiation. J Virol. 1980 Jan;33(1):330–339. doi: 10.1128/jvi.33.1.330-339.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Müller B., Jones C., West S. C. T7 endonuclease I resolves Holliday junctions formed in vitro by RecA protein. Nucleic Acids Res. 1990 Oct 11;18(19):5633–5636. doi: 10.1093/nar/18.19.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pierce J. C., Masker W. E. A single-base change in gene 10 of bacteriophage T7 permits growth on Shigella sonnei. J Virol. 1988 Nov;62(11):4369–4371. doi: 10.1128/jvi.62.11.4369-4371.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pierce J. C., Masker W. Genetic deletions between directly repeated sequences in bacteriophage T7. Mol Gen Genet. 1989 Jun;217(2-3):215–222. doi: 10.1007/BF02464884. [DOI] [PubMed] [Google Scholar]
  18. Powling A., Knippers R. Recombination of bacteriophage T7 in vivo. Mol Gen Genet. 1976 Nov 24;149(1):63–71. doi: 10.1007/BF00275961. [DOI] [PubMed] [Google Scholar]
  19. Powling A., Knippers R. Some functions involved in bacteriophage T7 genetic recombination. Mol Gen Genet. 1974;134(2):173–180. doi: 10.1007/BF00268418. [DOI] [PubMed] [Google Scholar]
  20. Resnick M. A. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol. 1976 Jun;59(1):97–106. doi: 10.1016/s0022-5193(76)80025-2. [DOI] [PubMed] [Google Scholar]
  21. Richardson C. C. The 5'-terminal nucleotides of T7 bacteriophage deoxyribonucleic acid. J Mol Biol. 1966 Jan;15(1):49–61. doi: 10.1016/s0022-2836(66)80208-5. [DOI] [PubMed] [Google Scholar]
  22. Roberts L., Sheldon R., Sadowski P. D. Genetic recombination of bacteriophage T7 DNA in vitro. IV. Asymmetry of recombination frequencies caused by polarity of DNA packaging. Virology. 1978 Aug;89(1):252–261. doi: 10.1016/0042-6822(78)90057-0. [DOI] [PubMed] [Google Scholar]
  23. Roeder G. S., Sadowski P. D. Pathways of recombination of bacteriophage T7 DNA in vitro. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1023–1032. doi: 10.1101/sqb.1979.043.01.111. [DOI] [PubMed] [Google Scholar]
  24. Sadowski P. D. Genetic recombination of bacteriophage T7 DNA in vitro. II. Further properties of the in vitro recombination-packaging reaction. Virology. 1977 May 1;78(1):192–202. doi: 10.1016/0042-6822(77)90091-5. [DOI] [PubMed] [Google Scholar]
  25. Sadowski P. D., Vetter D. Genetic recombination of bacteriophage T7 DNA in vitro. Proc Natl Acad Sci U S A. 1976 Mar;73(3):692–696. doi: 10.1073/pnas.73.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Serwer P., Masker W. E., Allen J. L. Stability and in vitro DNA packaging of bacteriophages: effects of dextrans, sugars, and polyols. J Virol. 1983 Feb;45(2):665–671. doi: 10.1128/jvi.45.2.665-671.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith R. D., Miller R. C., Jr Replication and plasmid-bacteriophage recombination. I. Marker rescue analysis. Virology. 1981 Dec;115(2):223–236. doi: 10.1016/0042-6822(81)90106-9. [DOI] [PubMed] [Google Scholar]
  28. Stone J. C., Miller R. C., Jr Plasmid-phage recombination in T7 infected Escherichia coli. Virology. 1984 Sep;137(2):305–313. doi: 10.1016/0042-6822(84)90222-8. [DOI] [PubMed] [Google Scholar]
  29. Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
  30. Studier F. W. The genetics and physiology of bacteriophage T7. Virology. 1969 Nov;39(3):562–574. doi: 10.1016/0042-6822(69)90104-4. [DOI] [PubMed] [Google Scholar]
  31. Symington L. S. Double-strand-break repair and recombination catalyzed by a nuclear extract of Saccharomyces cerevisiae. EMBO J. 1991 Apr;10(4):987–996. doi: 10.1002/j.1460-2075.1991.tb08033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  33. Takahashi N., Kobayashi I. Evidence for the double-strand break repair model of bacteriophage lambda recombination. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2790–2794. doi: 10.1073/pnas.87.7.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thaler D. S., Stahl F. W. DNA double-chain breaks in recombination of phage lambda and of yeast. Annu Rev Genet. 1988;22:169–197. doi: 10.1146/annurev.ge.22.120188.001125. [DOI] [PubMed] [Google Scholar]
  35. Tsujimoto Y., Ogawa H. Intermediates in genetic recombination of bacteriophage T7 DNA. Biological activity and the roles of gene 3 and gene 5. J Mol Biol. 1978 Nov 5;125(3):255–273. doi: 10.1016/0022-2836(78)90402-3. [DOI] [PubMed] [Google Scholar]
  36. Tsujimoto Y., Ogawa H. Intermediates in genetic recombination of bacteriophage T7 DNA. J Mol Biol. 1977 Jan 25;109(3):423–426. doi: 10.1016/s0022-2836(77)80021-1. [DOI] [PubMed] [Google Scholar]
  37. Vlachopoulou P. J., Sadowksi P. D. Genetic recombination of bacteriophage T7 DNA in vitro III. A physical assay for recombinant DNA. Virology. 1977 May 1;78(1):203–215. doi: 10.1016/0042-6822(77)90092-7. [DOI] [PubMed] [Google Scholar]
  38. Wackernagel W., Hermanns U. Inhibition of exonuclease V after infection of E. coli by bacteriophage T7. Biochem Biophys Res Commun. 1974 Sep 23;60(2):521–527. doi: 10.1016/0006-291x(74)90271-x. [DOI] [PubMed] [Google Scholar]
  39. de Massy B., Weisberg R. A., Studier F. W. Gene 3 endonuclease of bacteriophage T7 resolves conformationally branched structures in double-stranded DNA. J Mol Biol. 1987 Jan 20;193(2):359–376. doi: 10.1016/0022-2836(87)90224-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES