Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998 Aug;78(3):382–387. doi: 10.1038/bjc.1998.503

The growth law of primary breast cancer as inferred from mammography screening trials data.

D Hart 1, E Shochat 1, Z Agur 1
PMCID: PMC2063020  PMID: 9703287

Abstract

Despite considerable progress in understanding tumour development, the law of growth for human tumours is still a matter of some dispute. In this study, we used large-scale mammography screening trial data to deduce the growth law of primary breast cancer. We compared the empirical tumour population size distributions of primary breast cancer inferred from these data to the distributions that correspond to various possible theoretical growth functions. From this, we showed that the data are inconsistent with the exponential, logistic and Gompertz laws, but support power law growth (exponent approximately 0.5). This law indicates unbounded growth but with slowing mass-specific growth rate and doubling time. In the clinical size ranges, it implies a greater decline in the mass-specific growth rate than would be predicted by the Gompertz law using the accepted parameters. This suggests that large tumours would be less sensitive to cycle-specific therapies, and be better treated first by non-cell cycle-specific agents. We discussed the use of our study to estimate the sensitivity of mammography for the detection of small tumours. For example, we estimated that mammography is about 30% less sensitive in the detection of tumours in the 1 to 1.5-cm range than it is in detecting larger tumours.

Full text

PDF
385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonadonna G., Zambetti M., Valagussa P. Sequential or alternating doxorubicin and CMF regimens in breast cancer with more than three positive nodes. Ten-year results. JAMA. 1995 Feb 15;273(7):542–547. [PubMed] [Google Scholar]
  2. Burhenne L. J., Hislop T. G., Burhenne H. J. The British Columbia Mammography Screening Program: evaluation of the first 15 months. AJR Am J Roentgenol. 1992 Jan;158(1):45–49. doi: 10.2214/ajr.158.1.1307850. [DOI] [PubMed] [Google Scholar]
  3. Corvò R., Giaretti W., Sanguineti G., Geido E., Orecchia R., Guenzi M., Margarino G., Bacigalupo A., Garaventa G., Barbieri M. In vivo cell kinetics in head and neck squamous cell carcinomas predicts local control and helps guide radiotherapy regimen. J Clin Oncol. 1995 Aug;13(8):1843–1850. doi: 10.1200/JCO.1995.13.8.1843. [DOI] [PubMed] [Google Scholar]
  4. Crown J. High-dose chemotherapy of metastatic breast cancer: the end of the beginning? Br J Cancer. 1997;75(4):467–469. doi: 10.1038/bjc.1997.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Koning H. J., Fracheboud J., Boer R., Verbeek A. L., Collette H. J., Hendriks J. H., van Ineveld B. M., de Bruyn A. E., van der Maas P. J. Nation-wide breast cancer screening in The Netherlands: support for breast-cancer mortality reduction. National Evaluation Team for Breast Cancer Screening (NETB). Int J Cancer. 1995 Mar 16;60(6):777–780. doi: 10.1002/ijc.2910600608. [DOI] [PubMed] [Google Scholar]
  6. Dethlefsen L. A., Prewitt J. M., Mendelsohn M. L. Analysis of tumor growth curves. J Natl Cancer Inst. 1968 Feb;40(2):389–405. doi: 10.1093/jnci/40.2.389. [DOI] [PubMed] [Google Scholar]
  7. Drasdo D, Kree R, McCaskill JS. Monte Carlo approach to tissue-cell populations. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Dec;52(6):6635–6657. doi: 10.1103/physreve.52.6635. [DOI] [PubMed] [Google Scholar]
  8. Fagerberg G., Baldetorp L., Gröntoft O., Lundström B., Månson J. C., Nordenskjöld B. Effects of repeated mammographic screening on breast cancer stage distribution. Results from a randomised study of 92 934 women in a Swedish county. Acta Radiol Oncol. 1985 Nov-Dec;24(6):465–473. doi: 10.3109/02841868509134418. [DOI] [PubMed] [Google Scholar]
  9. Feig S. A., Shaber G. S., Patchefsky A., Schwartz G. F., Edeiken J., Libshitz H. I., Nerlinger R., Curley R. F., Wallace J. D. Analysis of clinically occult and mammographically occult breast tumors. AJR Am J Roentgenol. 1977 Mar;128(3):403–408. doi: 10.2214/ajr.128.3.403. [DOI] [PubMed] [Google Scholar]
  10. Flehinger B. J., Kimmel M., Polyak T., Melamed M. R. Screening for lung cancer. The Mayo Lung Project revisited. Cancer. 1993 Sep 1;72(5):1573–1580. doi: 10.1002/1097-0142(19930901)72:5<1573::aid-cncr2820720514>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  11. Fletcher S. W., Black W., Harris R., Rimer B. K., Shapiro S. Report of the International Workshop on Screening for Breast Cancer. J Natl Cancer Inst. 1993 Oct 20;85(20):1644–1656. doi: 10.1093/jnci/85.20.1644. [DOI] [PubMed] [Google Scholar]
  12. GERSHON-COHEN J., BERGER S. M., KLICKSTEIN H. S. ROENTGENOGRAPHY OF BREAST CANCER MODERATING CONCEPT OF "BIOLOGIC PREDETERMINISM". Cancer. 1963 Aug;16:961–964. doi: 10.1002/1097-0142(196308)16:8<961::aid-cncr2820160802>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  13. Heuser L., Spratt J. S., Polk H. C., Jr Growth rates of primary breast cancers. Cancer. 1979 May;43(5):1888–1894. doi: 10.1002/1097-0142(197905)43:5<1888::aid-cncr2820430545>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  14. Holmberg L. H., Tabar L., Adami H. O., Bergström R. Survival in breast cancer diagnosed between mammographic screening examinations. Lancet. 1986 Jul 5;2(8497):27–30. doi: 10.1016/s0140-6736(86)92569-9. [DOI] [PubMed] [Google Scholar]
  15. Holmgren L., O'Reilly M. S., Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995 Feb;1(2):149–153. doi: 10.1038/nm0295-149. [DOI] [PubMed] [Google Scholar]
  16. Kimmel M., Flehinger B. J. Nonparametric estimation of the size-metastasis relationship in solid cancers. Biometrics. 1991 Sep;47(3):987–1004. [PubMed] [Google Scholar]
  17. LAIRD A. K. DYNAMICS OF TUMOUR GROWTH: COMPARISON OF GROWTH RATES AND EXTRAPOLATION OF GROWTH CURVE TO ONE CELL. Br J Cancer. 1965 Jun;19:278–291. doi: 10.1038/bjc.1965.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meyer J. S., Coplin M. D. Thymidine labeling index, flow cytometric S-phase measurement, and DNA index in human tumors. Comparisons and correlations. Am J Clin Pathol. 1988 May;89(5):586–595. doi: 10.1093/ajcp/89.5.586. [DOI] [PubMed] [Google Scholar]
  19. Norton L. A Gompertzian model of human breast cancer growth. Cancer Res. 1988 Dec 15;48(24 Pt 1):7067–7071. [PubMed] [Google Scholar]
  20. Norton L., Simon R., Brereton H. D., Bogden A. E. Predicting the course of Gompertzian growth. Nature. 1976 Dec 9;264(5586):542–545. doi: 10.1038/264542a0. [DOI] [PubMed] [Google Scholar]
  21. Norton L., Simon R. The Norton-Simon hypothesis revisited. Cancer Treat Rep. 1986 Jan;70(1):163–169. [PubMed] [Google Scholar]
  22. Peer P. G., Holland R., Hendriks J. H., Mravunac M., Verbeek A. L. Age-specific effectiveness of the Nijmegen population-based breast cancer-screening program: assessment of early indicators of screening effectiveness. J Natl Cancer Inst. 1994 Mar 16;86(6):436–441. doi: 10.1093/jnci/86.6.436. [DOI] [PubMed] [Google Scholar]
  23. Peer P. G., van Dijck J. A., Hendriks J. H., Holland R., Verbeek A. L. Age-dependent growth rate of primary breast cancer. Cancer. 1993 Jun 1;71(11):3547–3551. doi: 10.1002/1097-0142(19930601)71:11<3547::aid-cncr2820711114>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  24. Schiffer L. M., Braunschweiger P. G., Stragand J. J., Poulakos L. The cell kinetics of human mammary cancers. Cancer. 1979 May;43(5):1707–1719. doi: 10.1002/1097-0142(197905)43:5<1707::aid-cncr2820430522>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  25. Spratt J. A., von Fournier D., Spratt J. S., Weber E. E. Decelerating growth and human breast cancer. Cancer. 1993 Mar 15;71(6):2013–2019. doi: 10.1002/1097-0142(19930315)71:6<2013::aid-cncr2820710615>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  26. Steel G. G. Cell loss as a factor in the growth rate of human tumours. Eur J Cancer. 1967 Nov;3(4):381–387. doi: 10.1016/0014-2964(67)90022-9. [DOI] [PubMed] [Google Scholar]
  27. Tabar L., Fagerberg G., Chen H. H., Duffy S. W., Smart C. R., Gad A., Smith R. A. Efficacy of breast cancer screening by age. New results from the Swedish Two-County Trial. Cancer. 1995 May 15;75(10):2507–2517. doi: 10.1002/1097-0142(19950515)75:10<2507::aid-cncr2820751017>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  28. Tabàr L., Fagerberg G., Duffy S. W., Day N. E., Gad A., Gröntoft O. Update of the Swedish two-county program of mammographic screening for breast cancer. Radiol Clin North Am. 1992 Jan;30(1):187–210. [PubMed] [Google Scholar]
  29. Thomas B. A., Price J. L., Boulter P. S., Gibbs N. M. The first three years of the Guildford Breast Screening Project. Recent Results Cancer Res. 1984;90:195–199. doi: 10.1007/978-3-642-82031-1_27. [DOI] [PubMed] [Google Scholar]
  30. Xu J. L., Prorok P. C. Nonparametric estimation of solid cancer size at metastasis and probability of presenting with metastasis at detection. Biometrics. 1997 Jun;53(2):579–591. [PubMed] [Google Scholar]
  31. von Fournier D., Weber E., Hoeffken W., Bauer M., Kubli F., Barth V. Growth rate of 147 mammary carcinomas. Cancer. 1980 Apr 15;45(8):2198–2207. doi: 10.1002/1097-0142(19800415)45:8<2198::aid-cncr2820450832>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES