Abstract
The aim of our work was quantitative evaluation of the protein and phospholipid fractions of mature erythrocyte membranes separated from women with ovarian cancer. Blood was sampled from 30 women with ovarian cancer, aged 24-79 years, in the third stage of clinical progression of the disease. Phospholipids were separated from membranes by Müller's acidic extraction method and analysed in thin-layer two-dimensional chromatography. On the silica gel plates nine fractions of phospholipids were separated: sphingomyelin (SPH), phosphatidylethanolamine (PE), phosphatidlyserine (PS), phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidic acid (PA), phosphatidylinositol (Ptd Ins), phosphatidylinositol-4-phosphate (Ptd Ins-4-P), phosphatidylinositol-4,5-diphosphate (Ptd Ins-4,5-P2). The activity of phospholipase C in erythrocyte membranes was determined by Akhrem's spectrophotometric method. Membrane proteins were separated by polyacrylamide gel electrophoresis, SDS-PAGE. It was shown that PS, SPH, LPC and PA fractions were significantly diminished. The concentration of Ptd Ins-4-P and Ptd Ins-4,5-P2 was significantly increased with simultaneous reduction in Ptd Ins level. The inhibition of phospholipase C reached 80%. The quantitative protein evaluation showed a statistically significant decrease in spectrin and a significant increase in 4.1 protein. The quantitative changes, observed in phospholipid and protein fractions, led to the restructuring of the erythrocyte membrane cytoskeleton, which may be connected to increased susceptibility to haemolysis of red blood cells.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- An X. L., Takakuwa Y., Nunomura W., Manno S., Mohandas N. Modulation of band 3-ankyrin interaction by protein 4.1. Functional implications in regulation of erythrocyte membrane mechanical properties. J Biol Chem. 1996 Dec 27;271(52):33187–33191. doi: 10.1074/jbc.271.52.33187. [DOI] [PubMed] [Google Scholar]
- Anderson R. A., Marchesi V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature. 1985 Nov 21;318(6043):295–298. doi: 10.1038/318295a0. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Barwijuk A. J., Swietochowska K., Piaścik R., Jaroszewicz K., Skrzydlewski Z. Phospholipid composition of plasma and erythrocytes in the neonate. Acta Physiol Pol. 1989 Jul-Aug;40(4):404–408. [PubMed] [Google Scholar]
- Bolt M. J., Bissonnette B. M., Wali R. K., Hartmann S. C., Brasitus T. A., Sitrin M. D. Characterization of phosphoinositide-specific phospholipase C in rat colonocyte membranes. Biochem J. 1993 May 15;292(Pt 1):271–276. doi: 10.1042/bj2920271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
- Broekhuyse R. M. Quantitative two-dimensional thin-layer chromatography of blood phospholipids. Clin Chim Acta. 1969 Mar;23(3):457–461. doi: 10.1016/0009-8981(69)90349-0. [DOI] [PubMed] [Google Scholar]
- Byers T. J., Branton D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6153–6157. doi: 10.1073/pnas.82.18.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chao T. S., Tao M. Modulation of protein 4.1 binding to inside-out membrane vesicles by phosphorylation. Biochemistry. 1991 Oct 29;30(43):10529–10535. doi: 10.1021/bi00107a023. [DOI] [PubMed] [Google Scholar]
- Chien S., Sung L. P. Molecular basis of red cell membrane rheology. Part 1. Biorheology. 1990;27(3-4):327–344. doi: 10.3233/bir-1990-273-410. [DOI] [PubMed] [Google Scholar]
- Comings D. E., Pekkala A., Schuh J. R., Kuo P. C., Chan S. I. Huntington disease and Tourette syndrome. I. Electron spin resonance of bed ghosts. Am J Hum Genet. 1981 Mar;33(2):166–174. [PMC free article] [PubMed] [Google Scholar]
- Derick L. H., Liu S. C., Chishti A. H., Palek J. Protein immunolocalization in the spread erythrocyte membrane skeleton. Eur J Cell Biol. 1992 Apr;57(2):317–320. [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Huestis W. H. Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol. 1984 Jun;98(6):1992–1998. doi: 10.1083/jcb.98.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler V. M. Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol. 1990 Aug;111(2):471–481. doi: 10.1083/jcb.111.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gudi S. R., Kumar A., Bhakuni V., Gokhale S. M., Gupta C. M. Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes. Biochim Biophys Acta. 1990 Mar 30;1023(1):63–72. doi: 10.1016/0005-2736(90)90010-l. [DOI] [PubMed] [Google Scholar]
- Haest C. W., Plasa G., Kamp D., Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1978 May 4;509(1):21–32. doi: 10.1016/0005-2736(78)90004-4. [DOI] [PubMed] [Google Scholar]
- Hanspal M., Palek J. Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors. J Cell Biol. 1987 Sep;105(3):1417–1424. doi: 10.1083/jcb.105.3.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honda K., Ishiko O., Tatsuta I., Deguchi M., Hirai K., Nakata S., Sumi T., Yasui T., Ogita S. Anemia-inducing substance from plasma of patients with advanced malignant neoplasms. Cancer Res. 1995 Aug 15;55(16):3623–3628. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leto T. L., Marchesi V. T. A structural model of human erythrocyte protein 4.1. J Biol Chem. 1984 Apr 10;259(7):4603–4608. [PubMed] [Google Scholar]
- Lorenzo F., Dalla Venezia N., Morlé L., Baklouti F., Alloisio N., Ducluzeau M. T., Roda L., Lefrançois P., Delaunay J. Protein 4.1 deficiency associated with an altered binding to the spectrin-actin complex of the red cell membrane skeleton. J Clin Invest. 1994 Oct;94(4):1651–1656. doi: 10.1172/JCI117508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lubin B., Chiu D., Bastacky J., Roelofsen B., Van Deenen L. L. Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Invest. 1981 Jun;67(6):1643–1649. doi: 10.1172/JCI110200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manno S., Takakuwa Y., Nagao K., Mohandas N. Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. J Biol Chem. 1995 Mar 10;270(10):5659–5665. doi: 10.1074/jbc.270.10.5659. [DOI] [PubMed] [Google Scholar]
- Marchesi S. L., Letsinger J. T., Speicher D. W., Marchesi V. T., Agre P., Hyun B., Gulati G. Mutant forms of spectrin alpha-subunits in hereditary elliptocytosis. J Clin Invest. 1987 Jul;80(1):191–198. doi: 10.1172/JCI113047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalak M., Sarzala M. G. Asymetria błon biologicznych. Postepy Biochem. 1977 Nov;23(4):523–539. [PubMed] [Google Scholar]
- Miller C. B., Jones R. J., Piantadosi S., Abeloff M. D., Spivak J. L. Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med. 1990 Jun 14;322(24):1689–1692. doi: 10.1056/NEJM199006143222401. [DOI] [PubMed] [Google Scholar]
- Müller E., Hegewald H., Jaroszewicz K., Cumme G. A., Hoppe H., Frunder H. Turnover of phosphomonoester groups and compartmentation of polyphosphoinositides in human erythrocytes. Biochem J. 1986 May 1;235(3):775–783. doi: 10.1042/bj2350775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pestonjamasp K. N., Mehta N. G. Neutral polymers elicit, and antibodies to spectrin, band 4.1 protein and cytoplasmic domain of band 3 protein inhibit the concanavalin A-mediated agglutination of human erythrocytes. Biochim Biophys Acta. 1995 Apr 12;1235(1):10–20. doi: 10.1016/0005-2736(94)00282-t. [DOI] [PubMed] [Google Scholar]
- Roy G., Villar L. M., Lazaro I., Gonzalez M., Bootello A., Gonzalez-Porque P. Purification and properties of membrane and cytosolic phosphatidylinositol-specific phospholipases C from human spleen. J Biol Chem. 1991 Jun 25;266(18):11495–11501. [PubMed] [Google Scholar]
- Rybczynska M., Feo C., Marden M., Poyart C. Abnormal rheological response of erythrocytes caused by nitroimidazoles and hyperthermia. Int J Hyperthermia. 1993 Mar-Apr;9(2):313–323. doi: 10.3109/02656739309022544. [DOI] [PubMed] [Google Scholar]
- Rybczynska M., Pawlak A. L., Hoffmann S. K., Ignatowicz R. Carriers of ataxia-telangiectasia gene display additional protein fraction and changes in the environment of SH groups in erythrocyte membrane. Biochim Biophys Acta. 1990 Mar;1022(3):260–264. doi: 10.1016/0005-2736(90)90272-p. [DOI] [PubMed] [Google Scholar]
- Rybicki A. C., Heath R., Lubin B., Schwartz R. S. Human erythrocyte protein 4.1 is a phosphatidylserine binding protein. J Clin Invest. 1988 Jan;81(1):255–260. doi: 10.1172/JCI113303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz R. S., Chiu D. T., Lubin B. Plasma membrane phospholipid organization in human erythrocytes. Curr Top Hematol. 1985;5:63–112. [PubMed] [Google Scholar]
- Sikorski A. F., Białkowska K., Bisikirska B., Szopa J. Spektryny erytrocytarna i nieerytrocytarne--struktura i funkcje. Postepy Biochem. 1993;39(1):50–60. [PubMed] [Google Scholar]
- Smith J. E. Erythrocyte membrane: structure, function, and pathophysiology. Vet Pathol. 1987 Nov;24(6):471–476. doi: 10.1177/030098588702400601. [DOI] [PubMed] [Google Scholar]
- Vermeulen W. P., Briedé J. J., Roelofsen B. Manipulation of the phosphatidylethanolamine pool in the human red cell membrane affects its Mg2+-ATPase activity. Mol Membr Biol. 1996 Apr-Jun;13(2):95–102. doi: 10.3109/09687689609160582. [DOI] [PubMed] [Google Scholar]