Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Nov;175(21):6822–6829. doi: 10.1128/jb.175.21.6822-6829.1993

Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila.

M T Latimer 1, J G Ferry 1
PMCID: PMC206805  PMID: 8226623

Abstract

The genes for the acetate-activating enzymes, acetate kinase and phosphotransacetylase (ack and pta), from Methanosarcina thermophila TM-1 were cloned and sequenced. Both genes are present in only one copy per genome, with the pta gene adjacent to and upstream of the ack gene. Consensus archaeal promoter sequences are found upstream of the pta coding region. The pta and ack genes encode predicted polypeptides with molecular masses of 35,198 and 44,482 Da, respectively. A hydropathy plot of the deduced phosphotransacetylase sequence indicates that it is a hydrophobic polypeptides; however, no membrane-spanning domains are evident. Comparison of the amino acid sequences deduced from the M. thermophila and Escherichia coli ack genes indicate similar subunit molecular weights and 44% identity (60% similarity). The comparison also revealed the presence of several conserved arginine, cysteine, and glutamic acid residues. Arginine, cysteine, and glutamic acid residues have previously been implicated at or near the active site of the E. coli acetate kinase. The pta and ack genes were hyperexpressed in E. coli, and the overproduced enzymes were purified to homogeneity with specific activities higher than those of the enzymes previously purified from M. thermophila. The overproduced phosphotransacetylase and acetate kinase migrated at molecular masses of 37,000 and 42,000 Da, respectively. The activity of the acetate kinase is optimal at 65 degrees C and is protected from thermal inactivation by ATP. Diethylpyrocarbonate and phenylglyoxal inhibited acetate kinase activity in a manner consistent with the presence of histidine and arginine residues at or near the active site; however, the thiol-directed reagents 5,5'-dithiobis (2-nitrobenzoic acid) and N-ethylmaleimide were ineffective.

Full text

PDF
6826

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceti D. J., Ferry J. G. Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis. J Biol Chem. 1988 Oct 25;263(30):15444–15448. [PubMed] [Google Scholar]
  2. Albano M., Breitling R., Dubnau D. A. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J Bacteriol. 1989 Oct;171(10):5386–5404. doi: 10.1128/jb.171.10.5386-5404.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Brown J. W., Daniels C. J., Reeve J. N. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989;16(4):287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
  5. Eggen R. I., Geerling A. C., Boshoven A. B., de Vos W. M. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. J Bacteriol. 1991 Oct;173(20):6383–6389. doi: 10.1128/jb.173.20.6383-6389.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferry J. G. Methane from acetate. J Bacteriol. 1992 Sep;174(17):5489–5495. doi: 10.1128/jb.174.17.5489-5495.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox D. K., Meadow N. D., Roseman S. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J Biol Chem. 1986 Oct 15;261(29):13498–13503. [PubMed] [Google Scholar]
  8. Fox D. K., Roseman S. Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli. J Biol Chem. 1986 Oct 15;261(29):13487–13497. [PubMed] [Google Scholar]
  9. Hong J. S., Hunt A. G., Masters P. S., Lieberman M. A. Requirements of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1213–1217. doi: 10.1073/pnas.76.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jablonski P. E., DiMarco A. A., Bobik T. A., Cabell M. C., Ferry J. G. Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. J Bacteriol. 1990 Mar;172(3):1271–1275. doi: 10.1128/jb.172.3.1271-1275.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jetten M. S., Stams A. J., Zehnder A. J. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. J Bacteriol. 1989 Oct;171(10):5430–5435. doi: 10.1128/jb.171.10.5430-5435.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kahane I., Muhlrad A. Purification and properties of acetate kinase from Acholeplasma laidlawii. J Bacteriol. 1979 Feb;137(2):764–772. doi: 10.1128/jb.137.2.764-772.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kibak H., Taiz L., Starke T., Bernasconi P., Gogarten J. P. Evolution of structure and function of V-ATPases. J Bioenerg Biomembr. 1992 Aug;24(4):415–424. doi: 10.1007/BF00762534. [DOI] [PubMed] [Google Scholar]
  14. Kim Y. S., Park C. Inactivation of Acinetobacter calcoaceticus acetate kinase by diethylpyrocarbonate. Biochim Biophys Acta. 1988 Sep 21;956(2):103–109. doi: 10.1016/0167-4838(88)90255-5. [DOI] [PubMed] [Google Scholar]
  15. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  16. Lundie L. L., Jr, Ferry J. G. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J Biol Chem. 1989 Nov 5;264(31):18392–18396. [PubMed] [Google Scholar]
  17. Matsuyama A., Yamamoto H., Nakano E. Cloning, expression, and nucleotide sequence of the Escherichia coli K-12 ackA gene. J Bacteriol. 1989 Jan;171(1):577–580. doi: 10.1128/jb.171.1.577-580.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCleary W. R., Stock J. B., Ninfa A. J. Is acetyl phosphate a global signal in Escherichia coli? J Bacteriol. 1993 May;175(10):2793–2798. doi: 10.1128/jb.175.10.2793-2798.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakajima H., Suzuki K., Imahori K. Purification and properties of acetate kinase from Bacillus stearothermophilus. J Biochem. 1978 Jul;84(1):193–203. doi: 10.1093/oxfordjournals.jbchem.a132108. [DOI] [PubMed] [Google Scholar]
  20. Nölling J., de Vos W. M. Characterization of the archaeal, plasmid-encoded type II restriction-modification system MthTI from Methanobacterium thermoformicicum THF: homology to the bacterial NgoPII system from Neisseria gonorrhoeae. J Bacteriol. 1992 Sep;174(17):5719–5726. doi: 10.1128/jb.174.17.5719-5726.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Preston G. G., Zeiher C., Wall J. D., Emerich D. W. Acetate-Activating Enzymes of Bradyrhizobium japonicum Bacteroids. Appl Environ Microbiol. 1989 Jan;55(1):165–170. doi: 10.1128/aem.55.1.165-170.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reeve J. N. Molecular biology of methanogens. Annu Rev Microbiol. 1992;46:165–191. doi: 10.1146/annurev.mi.46.100192.001121. [DOI] [PubMed] [Google Scholar]
  23. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  24. STADTMAN E. R. The purification and properties of phosphotransacetylase. J Biol Chem. 1952 May;196(2):527–534. [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schaupp A., Ljungdahl L. G. Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch Microbiol. 1974;100(2):121–129. doi: 10.1007/BF00446312. [DOI] [PubMed] [Google Scholar]
  27. Shieh J. S., Whitman W. B. Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J Bacteriol. 1987 Nov;169(11):5327–5329. doi: 10.1128/jb.169.11.5327-5329.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shimizu M., Suzuki T., Kameda K. Y., Abiko Y. Phosphotransacetylase of Escherichia coli B, purification and properties. Biochim Biophys Acta. 1969;191(3):550–558. doi: 10.1016/0005-2744(69)90348-9. [DOI] [PubMed] [Google Scholar]
  29. Sowers K. R., Gunsalus R. P. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J Bacteriol. 1988 Feb;170(2):998–1002. doi: 10.1128/jb.170.2.998-1002.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Suzuki T. Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides. Biochim Biophys Acta. 1969;191(3):559–569. doi: 10.1016/0005-2744(69)90349-0. [DOI] [PubMed] [Google Scholar]
  31. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thauer R. K. Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem. 1988 Oct 1;176(3):497–508. doi: 10.1111/j.1432-1033.1988.tb14307.x. [DOI] [PubMed] [Google Scholar]
  33. Thomm M., Wich G. An archaebacterial promoter element for stable RNA genes with homology to the TATA box of higher eukaryotes. Nucleic Acids Res. 1988 Jan 11;16(1):151–163. doi: 10.1093/nar/16.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thorne K. J., Barker D. C. Bactoprenol, ATPase and acetate activating enzymes of a vesicular fraction from Lactobacillus casei. Eur J Biochem. 1969 Dec;11(3):582–591. doi: 10.1111/j.1432-1033.1969.tb00810.x. [DOI] [PubMed] [Google Scholar]
  35. Todhunter J. A., Purich D. L. Evidence for the formation of a gamma-phosphorylated glutamyl residue in the Escherichia coli acetate kinase reaction. Biochem Biophys Res Commun. 1974 Sep 9;60(1):273–280. doi: 10.1016/0006-291x(74)90201-0. [DOI] [PubMed] [Google Scholar]
  36. Van Vliet F., Crabeel M., Boyen A., Tricot C., Stalon V., Falmagne P., Nakamura Y., Baumberg S., Glansdorff N. Sequences of the genes encoding argininosuccinate synthetase in Escherichia coli and Saccharomyces cerevisiae: comparison with methanogenic archaebacteria and mammals. Gene. 1990 Oct 30;95(1):99–104. doi: 10.1016/0378-1119(90)90419-r. [DOI] [PubMed] [Google Scholar]
  37. Vigenschow H., Schwarm H. M., Knobloch K. Purification and characterization of a phosphotransacetylase from Rhodopseudomonas palustris. Biol Chem Hoppe Seyler. 1986 Sep;367(9):957–962. doi: 10.1515/bchm3.1986.367.2.957. [DOI] [PubMed] [Google Scholar]
  38. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wanner B. L., Wilmes-Riesenberg M. R. Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J Bacteriol. 1992 Apr;174(7):2124–2130. doi: 10.1128/jb.174.7.2124-2130.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wong S. S., Wong L. J. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase. Biochim Biophys Acta. 1981 Jul 24;660(1):142–147. doi: 10.1016/0005-2744(81)90119-4. [DOI] [PubMed] [Google Scholar]
  41. Wong S. S., Wong L. J. Inactivation of Escherichia coli acetate kinase by N-ethylmaleimide. Protection by substrates and products. Biochim Biophys Acta. 1980 Sep 9;615(1):121–131. doi: 10.1016/0005-2744(80)90015-7. [DOI] [PubMed] [Google Scholar]
  42. Yamamoto-Otake H., Matsuyama A., Nakano E. Cloning of a gene coding for phosphotransacetylase from Escherichia coli. Appl Microbiol Biotechnol. 1990 Sep;33(6):680–682. doi: 10.1007/BF00604937. [DOI] [PubMed] [Google Scholar]
  43. Zinder S. H., Mah R. A. Isolation and Characterization of a Thermophilic Strain of Methanosarcina Unable to Use H(2)-CO(2) for Methanogenesis. Appl Environ Microbiol. 1979 Nov;38(5):996–1008. doi: 10.1128/aem.38.5.996-1008.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES