Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Jan;173(2):536–540. doi: 10.1128/jb.173.2.536-540.1991

Cloning and nucleic acid sequence of the Salmonella typhimurium pncB gene and structure of nicotinate phosphoribosyltransferase.

A Vinitsky 1, H Teng 1, C T Grubmeyer 1
PMCID: PMC207043  PMID: 1987148

Abstract

The pncB gene of Salmonella typhimurium, encoding nicotinate phosphoribosyltransferase (NAPRTase), was cloned on a 4.7-kb Sau3A fragment. The gene contains a 1,200-bp open reading frame coding for a 400-residue protein. Amino acid sequencing of the amino-terminal and two interior peptides of the purified protein confirmed the deduced sequence and revealed that the amino-terminal methionine residue was removed, giving a 399-residue mature protein of Mr 45,512. No signal sequence was observed in the predicted NAPRTase primary structure, suggesting that the enzyme is not periplasmic. The protein does not demonstrate clear sequence similarity to the other seven phosphoribosyltransferases of known primary structure and frustrates attempts to define a consensus 5-phosphoribosyl-1-pyrophosphate-binding region. The NAPRTase reaction is ATP stimulated, and the protein contains a carboxy-terminal sequence diagnostic of an ATP-binding site. An inverted repeat of the sequence TAAACAA observed in the proposed promoter region of pncB is also present in the promoter of nadA, which, like pncB, is also regulated by the NadR (NadI) repressor. The sequence may thus define an NadR repressor-binding site.

Full text

PDF
538

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P., Hanei M., Wilson J. M., Kelley W. N. A possible nucleotide-binding domain in the tertiary fold of phosphoribosyltransferases. J Biol Chem. 1983 May 25;258(10):6450–6457. [PubMed] [Google Scholar]
  2. Argos P., Leberman R. Homologies and anomalies in primary structural patterns of nucleotide binding proteins. Eur J Biochem. 1985 Nov 4;152(3):651–656. doi: 10.1111/j.1432-1033.1985.tb09244.x. [DOI] [PubMed] [Google Scholar]
  3. Baecker P. A., Yung S. G., Rodriguez M., Austin E., Andreoli A. J. Periplasmic localization of nicotinate phosphoribosyltransferase in Escherichia coli. J Bacteriol. 1978 Mar;133(3):1108–1112. doi: 10.1128/jb.133.3.1108-1112.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brendel V., Hamm G. H., Trifonov E. N. Terminators of transcription with RNA polymerase from Escherichia coli: what they look like and how to find them. J Biomol Struct Dyn. 1986 Feb;3(4):705–723. doi: 10.1080/07391102.1986.10508457. [DOI] [PubMed] [Google Scholar]
  5. Foster J. W., Holley-Guthrie E. A., Warren F. Regulation of NAD metabolism in Salmonella typhimurium: genetic analysis and cloning of the nadR repressor locus. Mol Gen Genet. 1987 Jun;208(1-2):279–287. doi: 10.1007/BF00330454. [DOI] [PubMed] [Google Scholar]
  6. Foster J. W., Holley E. A. Genetic mapping of the Salmonella typhimurium pncB locus. J Bacteriol. 1981 Oct;148(1):394–396. doi: 10.1128/jb.148.1.394-396.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foster J. W., Kinney D. M., Moat A. G. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide. J Bacteriol. 1979 Mar;137(3):1165–1175. doi: 10.1128/jb.137.3.1165-1175.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foster J. W., Kinney D. M., Moat A. G. Pyridine nucleotide cycle of Salmonella typhimurium: regulation of nicotinic acid phosphoribosyltransferase and nicotinamide deamidase. J Bacteriol. 1979 Jun;138(3):957–961. doi: 10.1128/jb.138.3.957-961.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster J. W., Park Y. K., Penfound T., Fenger T., Spector M. P. Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon. J Bacteriol. 1990 Aug;172(8):4187–4196. doi: 10.1128/jb.172.8.4187-4196.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fry D. C., Kuby S. A., Mildvan A. S. NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme. Biochemistry. 1985 Aug 13;24(17):4680–4694. doi: 10.1021/bi00338a030. [DOI] [PubMed] [Google Scholar]
  11. Hanna L. S., Hess S. L., Sloan D. L. Kinetic analysis of nicotinate phosphoribosyltransferase from yeast using high pressure liquid chromatography. J Biol Chem. 1983 Aug 25;258(16):9745–9754. [PubMed] [Google Scholar]
  12. Harkki A., Palva E. T. Application of phage lambda technology to Salmonella typhimurium. Construction of a lambda-sensitive Salmonella strain. Mol Gen Genet. 1984;195(1-2):256–259. doi: 10.1007/BF00332756. [DOI] [PubMed] [Google Scholar]
  13. Honjo T., Nakamura S., Nishizuka Y., Hayaishi O. Stoichiometric utilization of adenosine 5'-triphosphate in nicotinate ribonucleotide synthesis from nicotinate and 5-phosphoribosyl-1-pyrophosphate. Biochem Biophys Res Commun. 1966 Oct 20;25(2):199–204. doi: 10.1016/0006-291x(66)90580-8. [DOI] [PubMed] [Google Scholar]
  14. Hove-Jensen B., Harlow K. W., King C. J., Switzer R. L. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene. J Biol Chem. 1986 May 25;261(15):6765–6771. [PubMed] [Google Scholar]
  15. IMSANDE J. A CROSS-LINKED CONTROL SYSTEM. I. PROPERTIES OF A TRIPHOSPHATE-DEPENDENT NICOTINIC ACID MONONUCLEOTIDE PYROPHOSPHORYLASE FROM BACILLUS SUBTILIS. Biochim Biophys Acta. 1964 May 4;85:255–264. doi: 10.1016/0926-6569(64)90246-9. [DOI] [PubMed] [Google Scholar]
  16. IMSANDE J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. III. Nicotinic acid mononucleotide pyrophos-phorylase. J Biol Chem. 1961 Feb;236:525–530. [PubMed] [Google Scholar]
  17. Kahn V., Blum J. J. ATP-independent nicotinic acid mononucleotide pyrophosphorylase of Astasia longa. Biochim Biophys Acta. 1967 Sep 12;146(1):305–308. doi: 10.1016/0005-2744(67)90102-7. [DOI] [PubMed] [Google Scholar]
  18. Kosaka A., Spivey H. O., Gholson R. K. Nicotinate phosphoribosyltransferase of yeast. Purification and properties. J Biol Chem. 1971 May 25;246(10):3277–3283. [PubMed] [Google Scholar]
  19. Kosaka A., Spivey H. O., Gholson R. K. Yeast nicotinic acid phosphoribosyltransferase. Studies of reaction paths, phosphoenzyme, and Mg2+ effects. Arch Biochem Biophys. 1977 Feb;179(1):334–341. doi: 10.1016/0003-9861(77)90119-9. [DOI] [PubMed] [Google Scholar]
  20. Lipman D. J., Altschul S. F., Kececioglu J. D. A tool for multiple sequence alignment. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4412–4415. doi: 10.1073/pnas.86.12.4412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McClure W. R. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem. 1985;54:171–204. doi: 10.1146/annurev.bi.54.070185.001131. [DOI] [PubMed] [Google Scholar]
  22. Musick W. D. Structural features of the phosphoribosyltransferases and their relationship to the human deficiency disorders of purine and pyrimidine metabolism. CRC Crit Rev Biochem. 1981;11(1):1–34. doi: 10.3109/10409238109108698. [DOI] [PubMed] [Google Scholar]
  23. Niedel J., Dietrich L. S. Nicotinate phosphoribosyltransferase of human erythrocytes. Purification and properties. J Biol Chem. 1973 May 25;248(10):3500–3505. [PubMed] [Google Scholar]
  24. Park U. E., Olivera B. M., Hughes K. T., Roth J. R., Hillyard D. R. DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium. J Bacteriol. 1989 Apr;171(4):2173–2180. doi: 10.1128/jb.171.4.2173-2180.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pearson W. R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
  26. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  27. Smith L. D., Gholson R. K. Allosteric properties of bovine liver nicotinate phosphoribosyltransferase. J Biol Chem. 1969 Jan 10;244(1):68–71. [PubMed] [Google Scholar]
  28. Wubbolts M. G., Terpstra P., van Beilen J. B., Kingma J., Meesters H. A., Witholt B. Variation of cofactor levels in Escherichia coli. Sequence analysis and expression of the pncB gene encoding nicotinic acid phosphoribosyltransferase. J Biol Chem. 1990 Oct 15;265(29):17665–17672. [PubMed] [Google Scholar]
  29. Zhu N., Olivera B. M., Roth J. R. Identification of a repressor gene involved in the regulation of NAD de novo biosynthesis in Salmonella typhimurium. J Bacteriol. 1988 Jan;170(1):117–125. doi: 10.1128/jb.170.1.117-125.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES