Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Feb;173(3):1051–1063. doi: 10.1128/jb.173.3.1051-1063.1991

Salmonella typhimurium has two homologous but different umuDC operons: cloning of a new umuDC-like operon (samAB) present in a 60-megadalton cryptic plasmid of S. typhimurium.

T Nohmi 1, A Hakura 1, Y Nakai 1, M Watanabe 1, S Y Murayama 1, T Sofuni 1
PMCID: PMC207224  PMID: 1991707

Abstract

Expression of the umuDC operon is required for UV and most chemical mutagenesis in Escherichia coli. The DNA which can restore UV mutability to a umuD44 strain and to a umuC122::Tn5 strain of E. coli has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the cloned DNA potentially encoded proteins with calculated molecular weights of 15,523 and 47,726 and was an analog of the E. coli umuDC operon. We have termed this cloned DNA the samAB (for Salmonella mutagenesis) operon and tentatively referred to the umuDC operon of S. typhimurium LT2 (C. M. Smith, W. H. Koch, S. B. Franklin, P. L. Foster, T. A. Cebula, and E. Eisenstadt, J. Bacteriol. 172:4964-4978, 1990; S. M. Thomas, H. M. Crowne, S. C. Pidsley, and S. G. Sedgwick, J. Bacteriol. 172:4979-4987, 1990) as the umuDCST operon. The samAB operon is 40% diverged from the umuDCST operon at the nucleotide level. Among five umuDC-like operons so far sequenced, i.e., the samAB, umuDCST, mucAB, impAB, and E. coli umuDC operons, the samAB operon shows the highest similarity to the impAB operon of TP110 plasmid while the umuDCST operon shows the highest similarity to the E. coli umuDC operon. Southern hybridization experiments indicated that (i) S. typhimurium LT2 and TA1538 had both the samAB and the umuDCST operons and (ii) the samAB operon was located in a 60-MDa cryptic plasmid. The umuDCST operon is present in the chromosome. The presence of the two homologous but different umuDC operons may be involved in the poor mutability of S. typhimurium by UV and chemical mutagens.

Full text

PDF
1062

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Mccann J., Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975 Dec;31(6):347–364. doi: 10.1016/0165-1161(75)90046-1. [DOI] [PubMed] [Google Scholar]
  2. Bagg A., Kenyon C. J., Walker G. C. Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5749–5753. doi: 10.1073/pnas.78.9.5749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balganesh M., Setlow J. K. Genes from plasmid pKM101 in Haemophilus influenzae: separation of functions of mucA and mucB. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7753–7756. doi: 10.1073/pnas.82.22.7753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Battista J. R., Ohta T., Nohmi T., Sun W., Walker G. C. Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7190–7194. doi: 10.1073/pnas.87.18.7190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bridges B. A., Woodgate R. Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4193–4197. doi: 10.1073/pnas.82.12.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burckhardt S. E., Woodgate R., Scheuermann R. H., Echols H. UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1811–1815. doi: 10.1073/pnas.85.6.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donnelly C. E., Walker G. C. groE mutants of Escherichia coli are defective in umuDC-dependent UV mutagenesis. J Bacteriol. 1989 Nov;171(11):6117–6125. doi: 10.1128/jb.171.11.6117-6125.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eguchi Y., Ogawa T., Ogawa H. Cleavage of bacteriophage phi 80 CI repressor by RecA protein. J Mol Biol. 1988 Aug 5;202(3):565–573. doi: 10.1016/0022-2836(88)90286-0. [DOI] [PubMed] [Google Scholar]
  10. Elledge S. J., Walker G. C. Proteins required for ultraviolet light and chemical mutagenesis. Identification of the products of the umuC locus of Escherichia coli. J Mol Biol. 1983 Feb 25;164(2):175–192. doi: 10.1016/0022-2836(83)90074-8. [DOI] [PubMed] [Google Scholar]
  11. Foster P. L., Sullivan A. D., Franklin S. B. Presence of the dnaQ-rnh divergent transcriptional unit on a multicopy plasmid inhibits induced mutagenesis in Escherichia coli. J Bacteriol. 1989 Jun;171(6):3144–3151. doi: 10.1128/jb.171.6.3144-3151.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gasc A. M., Sicard N., Claverys J. P., Sicard A. M. Lack of SOS repair in Streptococcus pneumoniae. Mutat Res. 1980 Apr;70(2):157–165. doi: 10.1016/0027-5107(80)90155-4. [DOI] [PubMed] [Google Scholar]
  13. Glazebrook J. A., Grewal K. K., Strike P. Molecular analysis of the UV protection and mutation genes carried by the I incompatibility group plasmid TP110. J Bacteriol. 1986 Oct;168(1):251–256. doi: 10.1128/jb.168.1.251-256.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herrera G., Urios A., Aleixandre V., Blanco M. UV-light-induced mutability in Salmonella strains containing the umuDC or the mucAB operon: evidence for a umuC function. Mutat Res. 1988 Mar;198(1):9–13. doi: 10.1016/0027-5107(88)90034-6. [DOI] [PubMed] [Google Scholar]
  15. Hevroni D., Livneh Z. Bypass and termination at apurinic sites during replication of single-stranded DNA in vitro: a model for apurinic site mutagenesis. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5046–5050. doi: 10.1073/pnas.85.14.5046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hofemeister J., Köhler H., Filippov V. D. DNA repair in Proteus mirabilis. VI. Plasmid (R46-) mediated recovery and UV mutagenesis. Mol Gen Genet. 1979 Oct 3;176(2):265–273. [PubMed] [Google Scholar]
  17. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kato T., Shinoura Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol Gen Genet. 1977 Nov 14;156(2):121–131. doi: 10.1007/BF00283484. [DOI] [PubMed] [Google Scholar]
  19. Kitagawa Y., Akaboshi E., Shinagawa H., Horii T., Ogawa H., Kato T. Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4336–4340. doi: 10.1073/pnas.82.13.4336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Little J. W. Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1375–1379. doi: 10.1073/pnas.81.5.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Little J. W., Edmiston S. H., Pacelli L. Z., Mount D. W. Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3225–3229. doi: 10.1073/pnas.77.6.3225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Little J. W., Mount D. W. The SOS regulatory system of Escherichia coli. Cell. 1982 May;29(1):11–22. doi: 10.1016/0092-8674(82)90085-x. [DOI] [PubMed] [Google Scholar]
  23. Lodwick D., Owen D., Strike P. DNA sequence analysis of the imp UV protection and mutation operon of the plasmid TP110: identification of a third gene. Nucleic Acids Res. 1990 Sep 11;18(17):5045–5050. doi: 10.1093/nar/18.17.5045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MacPhee D. G. Effect of rec mutations on the ultraviolet protecting and mutation-enhancing properties of the plasmid R-Utrecht in Salmonella typhimurium. Mutat Res. 1973 Sep;19(3):357–359. doi: 10.1016/0027-5107(73)90237-6. [DOI] [PubMed] [Google Scholar]
  25. MacPhee D. G. Effects of an R factor and caffeine on ultraviolet mutability in Salmonella typhimurium. Mutat Res. 1973 Jun;18(3):367–370. doi: 10.1016/0027-5107(73)90221-2. [DOI] [PubMed] [Google Scholar]
  26. Maron D. M., Ames B. N. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983 May;113(3-4):173–215. doi: 10.1016/0165-1161(83)90010-9. [DOI] [PubMed] [Google Scholar]
  27. McCann J., Spingarn N. E., Kobori J., Ames B. N. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc Natl Acad Sci U S A. 1975 Mar;72(3):979–983. doi: 10.1073/pnas.72.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Michiels T., Popoff M. Y., Durviaux S., Coynault C., Cornelis G. A new method for the physical and genetic mapping of large plasmids: application to the localisation of the virulence determinants on the 90 kb plasmid of Salmonella typhimurium. Microb Pathog. 1987 Aug;3(2):109–116. doi: 10.1016/0882-4010(87)90069-6. [DOI] [PubMed] [Google Scholar]
  29. Mortelmans K. E., Stocker B. A. Ultraviolet light protection, enhancement of ultraviolet light mutagenesis, and mutator effect of plasmid R46 in Salmonella typhimurium. J Bacteriol. 1976 Oct;128(1):271–282. doi: 10.1128/jb.128.1.271-282.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nohmi T., Battista J. R., Dodson L. A., Walker G. C. RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1816–1820. doi: 10.1073/pnas.85.6.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Orrego C., Eisenstadt E. An inducible pathway is required for mutagenesis in Salmonella typhimurium LT2. J Bacteriol. 1987 Jun;169(6):2885–2888. doi: 10.1128/jb.169.6.2885-2888.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pang P. P., Walker G. C. The Salmonella typhimurium LT2 uvrD gene is regulated by the lexA gene product. J Bacteriol. 1983 Jun;154(3):1502–1504. doi: 10.1128/jb.154.3.1502-1504.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Perry K. L., Elledge S. J., Mitchell B. B., Marsh L., Walker G. C. umuDC and mucAB operons whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4331–4335. doi: 10.1073/pnas.82.13.4331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pierré A., Paoletti C. Purification and characterization of recA protein from salmonella typhimurium. J Biol Chem. 1983 Mar 10;258(5):2870–2874. [PubMed] [Google Scholar]
  35. Pinney R. J. Distribution among incompatibility groups of plasmids that confer UV mutability and UV resistance. Mutat Res. 1980 Aug;72(1):155–159. doi: 10.1016/0027-5107(80)90232-8. [DOI] [PubMed] [Google Scholar]
  36. Sanderson K. E., Kadam S. K., MacLachlan P. R. Derepression of F factor function in Salmonella typhimurium. Can J Microbiol. 1983 Sep;29(9):1205–1212. doi: 10.1139/m83-184. [DOI] [PubMed] [Google Scholar]
  37. Sanderson K. E., Roth J. R. Linkage map of Salmonella typhimurium, edition VII. Microbiol Rev. 1988 Dec;52(4):485–532. doi: 10.1128/mr.52.4.485-532.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sedgwick S. G., Goodwin P. A. Differences in mutagenic and recombinational DNA repair in enterobacteria. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4172–4176. doi: 10.1073/pnas.82.12.4172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shinagawa H., Iwasaki H., Kato T., Nakata A. RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1806–1810. doi: 10.1073/pnas.85.6.1806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shinagawa H., Kato T., Ise T., Makino K., Nakata A. Cloning and characterization of the umu operon responsible for inducible mutagenesis in Escherichia coli. Gene. 1983 Aug;23(2):167–174. doi: 10.1016/0378-1119(83)90048-3. [DOI] [PubMed] [Google Scholar]
  42. Skavronskaya A. G., Stepanova N. F., Andreeva I. V. UV-mutable hybrids of Salmonella incorporating Escherichia coli region adjacent to tryptophan operon. Mol Gen Genet. 1982;185(2):315–318. doi: 10.1007/BF00330804. [DOI] [PubMed] [Google Scholar]
  43. Slilaty S. N., Little J. W. Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. Proc Natl Acad Sci U S A. 1987 Jun;84(12):3987–3991. doi: 10.1073/pnas.84.12.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smith C. M., Eisenstadt E. Identification of a umuDC locus in Salmonella typhimurium LT2. J Bacteriol. 1989 Jul;171(7):3860–3865. doi: 10.1128/jb.171.7.3860-3865.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Smith C. M., Koch W. H., Franklin S. B., Foster P. L., Cebula T. A., Eisenstadt E. Sequence analysis and mapping of the Salmonella typhimurium LT2 umuDC operon. J Bacteriol. 1990 Sep;172(9):4964–4978. doi: 10.1128/jb.172.9.4964-4978.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Steinborn G. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol Gen Genet. 1978 Sep 20;165(1):87–93. doi: 10.1007/BF00270380. [DOI] [PubMed] [Google Scholar]
  47. Steinborn G. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. II. Further evidence for a novel function in error-prone repair. Mol Gen Genet. 1979 Sep;175(2):203–208. doi: 10.1007/BF00425537. [DOI] [PubMed] [Google Scholar]
  48. Strike P., Lodwick D. Plasmid genes affecting DNA repair and mutation. J Cell Sci Suppl. 1987;6:303–321. doi: 10.1242/jcs.1984.supplement_6.20. [DOI] [PubMed] [Google Scholar]
  49. Sukupolvi S., O'Connor D., Edwards M. F. The traT protein is able to normalize the phenotype of a plasmid-carried permeability mutation of Salmonella typhimurium. J Gen Microbiol. 1986 Aug;132(8):2079–2085. doi: 10.1099/00221287-132-8-2079. [DOI] [PubMed] [Google Scholar]
  50. Tempest P. R., Moseley B. E. Lack of ultraviolet mutagenesis in radiation-resistant bacteria. Mutat Res. 1982 May-Jun;104(4-5):275–280. doi: 10.1016/0165-7992(82)90156-7. [DOI] [PubMed] [Google Scholar]
  51. Thomas S. M., Crowne H. M., Pidsley S. C., Sedgwick S. G. Structural characterization of the Salmonella typhimurium LT2 umu operon. J Bacteriol. 1990 Sep;172(9):4979–4987. doi: 10.1128/jb.172.9.4979-4987.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Thomas S. M., Sedgwick S. G. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair. J Bacteriol. 1989 Nov;171(11):5776–5782. doi: 10.1128/jb.171.11.5776-5782.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Walker G. C. Inducible DNA repair systems. Annu Rev Biochem. 1985;54:425–457. doi: 10.1146/annurev.bi.54.070185.002233. [DOI] [PubMed] [Google Scholar]
  54. Walker G. C. Inducible reactivation and mutagenesis of UV-irradiated bacteriophage P22 in Salmonella typhimurium LT2 containing the plasmid pKM101. J Bacteriol. 1978 Aug;135(2):415–421. doi: 10.1128/jb.135.2.415-421.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Watanabe M., Nohmi T., Ishidate M., Jr New tester strains of Salmonella typhimurium highly sensitive to mutagenic nitroarenes. Biochem Biophys Res Commun. 1987 Sep 30;147(3):974–979. doi: 10.1016/s0006-291x(87)80165-1. [DOI] [PubMed] [Google Scholar]
  57. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Woodgate R., Rajagopalan M., Lu C., Echols H. UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD'. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7301–7305. doi: 10.1073/pnas.86.19.7301. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES