Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Feb;73(3):270–274. doi: 10.1038/bjc.1996.48

Combined effects of an angiogenesis inhibitor (TNP-470) and hyperthermia.

Y Nishimura 1, R Murata 1, M Hiraoka 1
PMCID: PMC2074428  PMID: 8562329

Abstract

TNP-470, a synthetic analogue of fumagillin first isolated from Aspergillus fumigatus, is known to be a potent anti-angiogenic compound. The combined effects on tumour growth and tumour angiogenesis of TNP-470 and hyperthermia were investigated. The tumour used was SCCVII carcinoma of the C3H/He mouse. The tumour response was evaluated by the tumour growth (TG) time assay. The TG time is the time required for one-half of the treated tumours to reach three times the initial tumour volume. Significant delay of tumour growth was observed by TNP-470 alone (100 mg kg-1 x 2 or x 4), indicating that TNP-470 alone has antitumour effect in vivo. When TNP-470 (100 mg kg-1 x 2 or x 4) was administered after hyperthermia at 44 degrees C, the TG times of the combined treatment were significantly longer than those of heat alone (44 degrees C) or TNP-470 (100 mg kg-1 x 2 or x 4) alone. However, the TG time of combined treatment with TNP-470 and hyperthermia at 42 degrees C was quite similar to that of TNP-470 alone. This conflicting result on the combined effect of TNP-470 and hyperthermia may be related to the temperature-dependent vascular damage by hyperthermia. Dose-dependent inhibition of angiogenesis by TNP-470 was demonstrated in microangiograms obtained 4 days and 7 days after hyperthermia (44 degrees C for 30 min). It is, thus, suggested that the combined effect of TNP-470 and hyperthermia is attributable to the inhibition of angiogenesis by TNP-470 following heat-induced vascular damage.

Full text

PDF
271

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bicknell R., Harris A. L. Novel growth regulatory factors and tumour angiogenesis. Eur J Cancer. 1991;27(6):781–785. doi: 10.1016/0277-5379(91)90189-k. [DOI] [PubMed] [Google Scholar]
  2. Brem H., Folkman J. Analysis of experimental antiangiogenic therapy. J Pediatr Surg. 1993 Mar;28(3):445–451. doi: 10.1016/0022-3468(93)90246-h. [DOI] [PubMed] [Google Scholar]
  3. Denekamp J. The current status of targeting tumour vasculature as a means of cancer therapy: an overview. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):401–408. doi: 10.1080/09553009114552251. [DOI] [PubMed] [Google Scholar]
  4. Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175–203. doi: 10.1016/s0065-230x(08)60946-x. [DOI] [PubMed] [Google Scholar]
  5. Hiraoka M., Akuta K., Nishimura Y., Nagata Y., Jo S., Takahashi M., Abe M. Tumor response to thermoradiation therapy: use of CT in evaluation. Radiology. 1987 Jul;164(1):259–262. doi: 10.1148/radiology.164.1.3588915. [DOI] [PubMed] [Google Scholar]
  6. Hirst D. G., Brown J. M., Hazlehurst J. L. Enhancement of CCNU cytotoxicity by misonidazole: possible therapeutic gain. Br J Cancer. 1982 Jul;46(1):109–116. doi: 10.1038/bjc.1982.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ingber D., Fujita T., Kishimoto S., Sudo K., Kanamaru T., Brem H., Folkman J. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature. 1990 Dec 6;348(6301):555–557. doi: 10.1038/348555a0. [DOI] [PubMed] [Google Scholar]
  8. Jo S., Hiraoka M., Akuta K., Nishimura Y., Takahashi M., Nishida H., Furuta M., Abe M. Histopathological changes of human tumors following thermoradiotherapy. Int J Radiat Oncol Biol Phys. 1989 Dec;17(6):1265–1271. doi: 10.1016/0360-3016(89)90535-x. [DOI] [PubMed] [Google Scholar]
  9. Kamei S., Okada H., Inoue Y., Yoshioka T., Ogawa Y., Toguchi H. Antitumor effects of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. J Pharmacol Exp Ther. 1993 Jan;264(1):469–474. [PubMed] [Google Scholar]
  10. Kusaka M., Sudo K., Fujita T., Marui S., Itoh F., Ingber D., Folkman J. Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin parent. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1070–1076. doi: 10.1016/0006-291x(91)91529-l. [DOI] [PubMed] [Google Scholar]
  11. Kusaka M., Sudo K., Matsutani E., Kozai Y., Marui S., Fujita T., Ingber D., Folkman J. Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470). Br J Cancer. 1994 Feb;69(2):212–216. doi: 10.1038/bjc.1994.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leopold K. A., Dewhirst M., Samulski T., Harrelson J., Tucker J. A., George S. L., Dodge R. K., Grant W., Clegg S., Prosnitz L. R. Relationships among tumor temperature, treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas. Int J Radiat Oncol Biol Phys. 1992;22(5):989–998. doi: 10.1016/0360-3016(92)90798-m. [DOI] [PubMed] [Google Scholar]
  13. Nishimura Y., Hiraoka M., Jo S., Akuta K., Nagata Y., Masunaga S., Takahashi M., Abe M. Radiofrequency (RF) capacitive hyperthermia combined with radiotherapy in the treatment of abdominal and pelvic deep-seated tumors. Radiother Oncol. 1989 Oct;16(2):139–149. doi: 10.1016/0167-8140(89)90031-5. [DOI] [PubMed] [Google Scholar]
  14. Nishimura Y., Hiraoka M., Jo S., Akuta K., Yukawa Y., Shibamoto Y., Takahashi M., Abe M. Microangiographic and histologic analysis of the effects of hyperthermia on murine tumor vasculature. Int J Radiat Oncol Biol Phys. 1988 Aug;15(2):411–420. doi: 10.1016/s0360-3016(98)90023-2. [DOI] [PubMed] [Google Scholar]
  15. Nishimura Y., Shibamoto Y., Jo S., Akuta K., Hiraoka M., Takahashi M., Abe M. Relationship between heat-induced vascular damage and thermosensitivity in four mouse tumors. Cancer Res. 1988 Dec 15;48(24 Pt 1):7226–7230. [PubMed] [Google Scholar]
  16. Nishimura Y., Urano M. Timing and sequence of hyperthermia in fractionated radiotherapy of a murine fibrosarcoma. Int J Radiat Oncol Biol Phys. 1993 Oct 20;27(3):605–611. doi: 10.1016/0360-3016(93)90386-a. [DOI] [PubMed] [Google Scholar]
  17. Reinhold H. S., Endrich B. Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia. 1986 Apr-Jun;2(2):111–137. doi: 10.3109/02656738609012389. [DOI] [PubMed] [Google Scholar]
  18. Song C. W. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 1984 Oct;44(10 Suppl):4721s–4730s. [PubMed] [Google Scholar]
  19. Takamiya Y., Friedlander R. M., Brem H., Malick A., Martuza R. L. Inhibition of angiogenesis and growth of human nerve-sheath tumors by AGM-1470. J Neurosurg. 1993 Mar;78(3):470–476. doi: 10.3171/jns.1993.78.3.0470. [DOI] [PubMed] [Google Scholar]
  20. Vaupel P., Kallinowski F., Kluge M. Pathophysiology of tumors in hyperthermia. Recent Results Cancer Res. 1988;107:65–75. doi: 10.1007/978-3-642-83260-4_9. [DOI] [PubMed] [Google Scholar]
  21. Waterman F. M., Nerlinger R. E., Moylan D. J., 3rd, Leeper D. B. Response of human tumor blood flow to local hyperthermia. Int J Radiat Oncol Biol Phys. 1987 Jan;13(1):75–82. doi: 10.1016/0360-3016(87)90263-x. [DOI] [PubMed] [Google Scholar]
  22. Yamaoka M., Yamamoto T., Ikeyama S., Sudo K., Fujita T. Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res. 1993 Nov 1;53(21):5233–5236. [PubMed] [Google Scholar]
  23. Yamaoka M., Yamamoto T., Masaki T., Ikeyama S., Sudo K., Fujita T. Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(chloroacetyl-carbamoyl)fumagillol (TNP-470; AGM-1470). Cancer Res. 1993 Sep 15;53(18):4262–4267. [PubMed] [Google Scholar]
  24. Yanase T., Tamura M., Fujita K., Kodama S., Tanaka K. Inhibitory effect of angiogenesis inhibitor TNP-470 on tumor growth and metastasis of human cell lines in vitro and in vivo. Cancer Res. 1993 Jun 1;53(11):2566–2570. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES