Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Mar;173(6):1965–1970. doi: 10.1128/jb.173.6.1965-1970.1991

Partial characterization of a lysU mutant of Escherichia coli K-12.

M Hassani 1, M V Saluta 1, G N Bennett 1, I N Hirshfield 1
PMCID: PMC207728  PMID: 2001999

Abstract

The Escherichia coli K-12 strain GNB10181 shows no inducible lysyl-tRNA synthetase (LysRS) activity. Two-dimensional gel electrophoretic analysis of the polypeptides synthesized by this strain indicates that the normal lysU gene product, LysU, is absent. When both GNB10181 and its parent, MC4100, were grown at elevated temperatures (42 to 45 degrees C) no significant difference between their growth rates was observed. The lysU mutation was transferred to other E. coli K-12 backgrounds by using P1 transduction. The lysU transductants behaved comparably to their lysU+ parents at different growth temperatures. Therefore, the LysU proteins does not appear to be essential for growth at high temperatures, at least under the conditions examined here. In addition, lysU transductants were found to be defective for inducible lysine decarboxylase, (LDC), inducible arginine decarboxylase (ADI), and melibiose utilization (Mel), which are all missing in GNB10181. Complementation of the above missing functions was achieved by using the Clarke-Carbon plasmids pLC4-5 (LysU LDC) and pLC17-38 (LysU Mel ADI). From these experiments, it appears that GNB10181 has suffered a chromosomal deletion between 93.4 and 93.7 min, which includes the lysU gene. By using plasmid pLC17-38, the position of ADI on two-dimensional gels was identified. Finally, lysS delta lysU double mutants were constructed which can potentially be used as positive selection agents for the isolation of LysRS genes from other sources.

Full text

PDF
1966

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardwell J. C., Craig E. A. Ancient heat shock gene is dispensable. J Bacteriol. 1988 Jul;170(7):2977–2983. doi: 10.1128/jb.170.7.2977-2983.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boy E., Reinisch F., Richaud C., Patte J. C. Role of lysyl-tRNA in the regulation of lysine biosynthesis in Escherichia coli K12. Biochimie. 1976;58(1-2):213–218. doi: 10.1016/s0300-9084(76)80372-0. [DOI] [PubMed] [Google Scholar]
  3. Clark R. L., Neidhardt F. C. Roles of the two lysyl-tRNA synthetases of Escherichia coli: analysis of nucleotide sequences and mutant behavior. J Bacteriol. 1990 Jun;172(6):3237–3243. doi: 10.1128/jb.172.6.3237-3243.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clarke L., Carbon J. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell. 1976 Sep;9(1):91–99. doi: 10.1016/0092-8674(76)90055-6. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Emmerich R. V., Hirshfield I. N. Mapping of the constitutive lysyl-tRNA synthetase gene of Escherichia coli K-12. J Bacteriol. 1987 Nov;169(11):5311–5313. doi: 10.1128/jb.169.11.5311-5313.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guest J. R., Miles J. S., Roberts R. E., Woods S. A. The fumarase genes of Escherichia coli: location of the fumB gene and discovery of a new gene (fumC). J Gen Microbiol. 1985 Nov;131(11):2971–2984. doi: 10.1099/00221287-131-11-2971. [DOI] [PubMed] [Google Scholar]
  8. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  9. Hickey E. W., Hirshfield I. N. Low-pH-induced effects on patterns of protein synthesis and on internal pH in Escherichia coli and Salmonella typhimurium. Appl Environ Microbiol. 1990 Apr;56(4):1038–1045. doi: 10.1128/aem.56.4.1038-1045.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirshfield I. N., Bloch P. L., Van Bogelen R. A., Neidhardt F. C. Multiple forms of lysyl-transfer ribonucleic acid synthetase in Escherichia coli. J Bacteriol. 1981 Apr;146(1):345–351. doi: 10.1128/jb.146.1.345-351.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirshfield I. N., Tenreiro R., Vanbogelen R. A., Neidhardt F. C. Escherichia coli K-12 lysyl-tRNA synthetase mutant with a novel reversion pattern. J Bacteriol. 1984 May;158(2):615–620. doi: 10.1128/jb.158.2.615-620.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirshfield I. N., Yeh F. M. An in vivo effect of the metabolites L-alanine and glycyl-L-leucine on the properties of the lysyl-tRNA synthetase from Escherichia coli K-12. II. Kinetic evidence. Biochim Biophys Acta. 1976 Jul 2;435(3):306–314. doi: 10.1016/0005-2787(76)90111-8. [DOI] [PubMed] [Google Scholar]
  13. Hirshfield I. N., Yeh F. M., Sawyer L. E. Metabolites influence control of lysine transfer ribonucleic acid synthetase formation in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1364–1367. doi: 10.1073/pnas.72.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Morris D. R., Boeker E. A. Biosynthetic and biodegradative ornithine and arginine decarboxylases from Escherichia coli. Methods Enzymol. 1983;94:125–134. doi: 10.1016/s0076-6879(83)94020-x. [DOI] [PubMed] [Google Scholar]
  16. NOVICK R. P., MAAS W. K. Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J Bacteriol. 1961 Feb;81:236–240. doi: 10.1128/jb.81.2.236-240.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  18. Tsuchiya T., Ottina K., Moriyama Y., Newman M. J., Wilson T. H. Solubilization and reconstitution of the melibiose carrier from a plasmid-carrying strain of Escherichia coli. J Biol Chem. 1982 May 10;257(9):5125–5128. [PubMed] [Google Scholar]
  19. VanBogelen R. A., Vaughn V., Neidhardt F. C. Gene for heat-inducible lysyl-tRNA synthetase (lysU) maps near cadA in Escherichia coli. J Bacteriol. 1983 Feb;153(2):1066–1068. doi: 10.1128/jb.153.2.1066-1068.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES