Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 May;173(9):2733–2738. doi: 10.1128/jb.173.9.2733-2738.1991

Interference with phage lambda development by the small subunit of the phage 21 terminase, gp1.

G Johnson 1, W Widner 1, W N Xin 1, M Feiss 1
PMCID: PMC207852  PMID: 1826903

Abstract

Bacteriophage lambda development is blocked in cells carrying a plasmid that expresses the terminase genes of phage 21. The interference is caused by the small subunit of phage 21 terminase, gp1. Mutants of lambda able to form plaques in the presence of gp1 include sti mutants. One such mutation, sti30, is an A. T-to-G.C transition mutation at base pair 184 on the lambda chromosome. The sti30 mutation extends the length of the ribosome-binding sequence of the Nul gene that is complementary to the 3' end of the 16S rRNA from GGA to GGAG. The sti30 mutation causes a approximately 50-fold increase in the level of expression of a Nul-lacZ reporter gene, indicating that the sti30 mutation overcomes the gp1 inhibition by increasing the level of expression of gpNul. Although the Nul and A genes of lambda overlap, the sti30 mutation has little effect on the level of gpA expression, indicating that translational coupling does not occur.

Full text

PDF
2736

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker A., Gold M. Prediction of an ATP reactive center in the small subunit, gpNu1, of the phage lambda terminase enzyme. J Mol Biol. 1988 Jan 5;199(1):219–222. doi: 10.1016/0022-2836(88)90391-9. [DOI] [PubMed] [Google Scholar]
  2. Becker A., Murialdo H. Bacteriophage lambda DNA: the beginning of the end. J Bacteriol. 1990 Jun;172(6):2819–2824. doi: 10.1128/jb.172.6.2819-2824.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  4. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. Methods Enzymol. 1983;100:293–308. doi: 10.1016/0076-6879(83)00063-4. [DOI] [PubMed] [Google Scholar]
  5. Chow S., Daub E., Murialdo H. The overproduction of DNA terminase of coliphage lambda. Gene. 1987;60(2-3):277–289. doi: 10.1016/0378-1119(87)90236-8. [DOI] [PubMed] [Google Scholar]
  6. Dunn J. J., Buzash-Pollert E., Studier F. W. Mutations of bacteriophage T7 that affect initiation of synthesis of the gene 0.3 protein. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2741–2745. doi: 10.1073/pnas.75.6.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feiss M., Fisher R., Siegele D. A., Widner W. Bacteriophage lambda and 21 packaging specificities. Prog Clin Biol Res. 1981;64:213–222. [PubMed] [Google Scholar]
  8. Feiss M., Frackman S., Momany T. Partial FI gene-independence of lambda-21 hybrid phages specifying chimeric terminases. Virology. 1988 Nov;167(1):323–325. doi: 10.1016/0042-6822(88)90090-6. [DOI] [PubMed] [Google Scholar]
  9. Feiss M., Siegele D. A., Rudolph C. F., Frackman S. Cosmid DNA packaging in vivo. Gene. 1982 Feb;17(2):123–130. doi: 10.1016/0378-1119(82)90064-6. [DOI] [PubMed] [Google Scholar]
  10. Feiss M., Widner W. Bacteriophage lambda DNA packaging: scanning for the terminal cohesive end site during packaging. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3498–3502. doi: 10.1073/pnas.79.11.3498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feiss M., Widner W., Miller G., Johnson G., Christiansen S. Structure of the bacteriophage lambda cohesive end site: location of the sites of terminase binding (cosB) and nicking (cosN). Gene. 1983 Oct;24(2-3):207–218. doi: 10.1016/0378-1119(83)90081-1. [DOI] [PubMed] [Google Scholar]
  12. Fisher R., Krizsanovich-Williams K., Feiss M. Construction and characterization of a cohesive end site mutant of bacteriophage lambda. Virology. 1980 Nov;107(1):144–159. doi: 10.1016/0042-6822(80)90280-9. [DOI] [PubMed] [Google Scholar]
  13. Forbes D., Herskowitz I. Polarity suppression by the Q gene product of bacteriophage lambda. J Mol Biol. 1982 Oct 5;160(4):549–569. doi: 10.1016/0022-2836(82)90314-x. [DOI] [PubMed] [Google Scholar]
  14. Frackman S., Siegele D. A., Feiss M. A functional domain of bacteriophage lambda terminase for prohead binding. J Mol Biol. 1984 Dec 5;180(2):283–300. doi: 10.1016/s0022-2836(84)80005-4. [DOI] [PubMed] [Google Scholar]
  15. Frackman S., Siegele D. A., Feiss M. The terminase of bacteriophage lambda. Functional domains for cosB binding and multimer assembly. J Mol Biol. 1985 May 25;183(2):225–238. doi: 10.1016/0022-2836(85)90215-3. [DOI] [PubMed] [Google Scholar]
  16. Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
  17. Gold L., Pribnow D., Schneider T., Shinedling S., Singer B. S., Stormo G. Translational initiation in prokaryotes. Annu Rev Microbiol. 1981;35:365–403. doi: 10.1146/annurev.mi.35.100181.002053. [DOI] [PubMed] [Google Scholar]
  18. Kaiser K. The origin of Q-independent derivatives of phage lambda. Mol Gen Genet. 1980;179(3):547–554. doi: 10.1007/BF00271744. [DOI] [PubMed] [Google Scholar]
  19. Miller G., Feiss M. Sequence of the left end of phage 21 DNA. J Mol Biol. 1985 May 25;183(2):246–249. doi: 10.1016/0022-2836(85)90217-7. [DOI] [PubMed] [Google Scholar]
  20. Oppenheim D. S., Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics. 1980 Aug;95(4):785–795. doi: 10.1093/genetics/95.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sampson L. L., Hendrix R. W., Huang W. M., Casjens S. R. Translation initiation controls the relative rates of expression of the bacteriophage lambda late genes. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5439–5443. doi: 10.1073/pnas.85.15.5439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Siegele D. A., Frackman S., Sippy J., Momany T., Howard T. M., Tilly K., Georgopoulos C., Feiss M. The head genes of bacteriophage 21. Virology. 1983 Sep;129(2):484–489. doi: 10.1016/0042-6822(83)90187-3. [DOI] [PubMed] [Google Scholar]
  24. Stanssens P., Remaut E., Fiers W. Inefficient translation initiation causes premature transcription termination in the lacZ gene. Cell. 1986 Mar 14;44(5):711–718. doi: 10.1016/0092-8674(86)90837-8. [DOI] [PubMed] [Google Scholar]
  25. Stormo G. D., Schneider T. D., Gold L. M. Characterization of translational initiation sites in E. coli. Nucleic Acids Res. 1982 May 11;10(9):2971–2996. doi: 10.1093/nar/10.9.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Strathern A., Herskowitz I. Defective prophage in Escherichia coli K12 strains. Virology. 1975 Sep;67(1):136–143. doi: 10.1016/0042-6822(75)90411-0. [DOI] [PubMed] [Google Scholar]
  27. Sumner-Smith M., Becker A. DNA packaging in the lambdoid phages: identification of the products of phi 80 genes 1 and 2. Virology. 1981 Jun;111(2):629–641. doi: 10.1016/0042-6822(81)90362-7. [DOI] [PubMed] [Google Scholar]
  28. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES