Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Aug;173(16):5173–5180. doi: 10.1128/jb.173.16.5173-5180.1991

Electrophoretic separation of the three Rhizobium meliloti replicons.

B W Sobral 1, R J Honeycutt 1, A G Atherly 1, M McClelland 1
PMCID: PMC208210  PMID: 1860826

Abstract

The megaplasmids and the chromosome from the bacterium Rhizobium meliloti 1021 were separated in preparative quantities by using transverse alternating-field gel electrophoresis. The genetic content of each electrophoretically separated band was determined by Southern hybridization with replicon-specific probes and by comparison with Agrobacterium tumefaciens transconjugants harboring either pSym-a or pSym-b megaplasmids. Pulsed-field gel electrophoresis analyses of PacI (5'-TTAATTAA-3') and SwaI (5'-ATTTAAAT-3') digests of the whole genome and of the separated replicons were used to calculate genome sizes in two R. meliloti strains. In these strains, PacI digestion yielded only four fragments for the entire genome. The sizes of the PacI fragments from R. meliloti 1021 in megabase pairs (Mb) were 3.32 +/- 0.30, 1.42 +/- 0.13, 1.21 +/- 0.10, and 0.55 +/- 0.08, for a total genome size of 6.50 +/- 0.61 Mb. Southern hybridization with replicon-specific probes assigned one PacI fragment to the chromosome of R. meliloti 1021, one to pRme1021a, and two to pRme1021b. PacI digestion of A. tumefaciens pTi-cured, pSym transconjugants confirmed these assignments. In agreement with PacI data, the addition of the six SwaI fragments from R. meliloti 1021 gave a genome size of 6.54 +/- 0.43 Mb. pRme1021a was calculated to be 1.42 +/- 0.13 Mb, 1.34 +/- 0.09 Mb, and 1.38 +/- 0.12 Mb on the basis of PacI digestion, SwaI digestion, and the migration of uncut pRme1021a, respectively. pRme1021b was calculated to be 1.76 +/- 0.18 Mb, 1.65 +/- 0.10 Mb, and 1.74 +/- 0.13 Mb on the basis of PacI digestion, SwaI digestion, and the migration of uncut pRme1021B, respectively. The R. meliloti 1021 chromosome was calculated to be 3.32 +/- 0.30 Mb, 3.55 +/- 0.24 Mb, and 3.26 +/- 0.46 Mb on the basis of PacI data, SwaI data, and the migration of uncut chromosome, respectively.

Full text

PDF
5173

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almagor H. A Markov analysis of DNA sequences. J Theor Biol. 1983 Oct 21;104(4):633–645. doi: 10.1016/0022-5193(83)90251-5. [DOI] [PubMed] [Google Scholar]
  2. Beverley S. M. Characterization of the 'unusual' mobility of large circular DNAs in pulsed field-gradient electrophoresis. Nucleic Acids Res. 1988 Feb 11;16(3):925–939. doi: 10.1093/nar/16.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burkardt B., Burkardt H. J. Visualization and exact molecular weight determination of a Rhizobium meliloti megaplasmid. J Mol Biol. 1984 May 15;175(2):213–218. doi: 10.1016/0022-2836(84)90475-3. [DOI] [PubMed] [Google Scholar]
  4. Burkardt B., Schillik D., Pühler A. Physical characterization of Rhizobium meliloti megaplasmids. Plasmid. 1987 Jan;17(1):13–25. doi: 10.1016/0147-619x(87)90004-7. [DOI] [PubMed] [Google Scholar]
  5. Bánfalvi Z., Sakanyan V., Koncz C., Kiss A., Dusha I., Kondorosi A. Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol Gen Genet. 1981;184(2):318–325. doi: 10.1007/BF00272925. [DOI] [PubMed] [Google Scholar]
  6. Carle G. F., Frank M., Olson M. V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. doi: 10.1126/science.3952500. [DOI] [PubMed] [Google Scholar]
  7. Charles T. C., Finan T. M. Genetic map of Rhizobium meliloti megaplasmid pRmeSU47b. J Bacteriol. 1990 May;172(5):2469–2476. doi: 10.1128/jb.172.5.2469-2476.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dusha I., Kovalenko S., Banfalvi Z., Kondorosi A. Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene. J Bacteriol. 1987 Apr;169(4):1403–1409. doi: 10.1128/jb.169.4.1403-1409.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flores M., González V., Brom S., Martínez E., Piñero D., Romero D., Dávila G., Palacios R. Reiterated DNA sequences in Rhizobium and Agrobacterium spp. J Bacteriol. 1987 Dec;169(12):5782–5788. doi: 10.1128/jb.169.12.5782-5788.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Flores M., González V., Pardo M. A., Leija A., Martínez E., Romero D., Piñero D., Dávila G., Palacios R. Genomic instability in Rhizobium phaseoli. J Bacteriol. 1988 Mar;170(3):1191–1196. doi: 10.1128/jb.170.3.1191-1196.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. doi: 10.1016/0378-1119(82)90167-6. [DOI] [PubMed] [Google Scholar]
  12. Gardiner K., Laas W., Patterson D. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somat Cell Mol Genet. 1986 Mar;12(2):185–195. doi: 10.1007/BF01560665. [DOI] [PubMed] [Google Scholar]
  13. Hightower R. C., Bliska J. B., Cozzarelli N. R., Santi D. V. Analysis of amplified DNAs from drug-resistant Leishmania by orthogonal-field-alternation gel electrophoresis. The effect of size and topology on mobility. J Biol Chem. 1989 Feb 15;264(5):2979–2984. [PubMed] [Google Scholar]
  14. Hightower R. C., Metge D. W., Santi D. V. Plasmid migration using orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1987 Oct 26;15(20):8387–8398. doi: 10.1093/nar/15.20.8387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hightower R. C., Santi D. V. Migration properties of circular DNAs using orthogonal-field-alternation gel electrophoresis. Electrophoresis. 1989 May-Jun;10(5-6):283–290. doi: 10.1002/elps.1150100503. [DOI] [PubMed] [Google Scholar]
  16. Hynes M. F., Simon R., Pühler A. The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid. 1985 Mar;13(2):99–105. doi: 10.1016/0147-619x(85)90062-9. [DOI] [PubMed] [Google Scholar]
  17. Jacobs T. W., Egelhoff T. T., Long S. R. Physical and genetic map of a Rhizobium meliloti nodulation gene region and nucleotide sequence of nodC. J Bacteriol. 1985 May;162(2):469–476. doi: 10.1128/jb.162.2.469-476.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levene S. D., Zimm B. H. Separations of open-circular DNA using pulsed-field electrophoresis. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4054–4057. doi: 10.1073/pnas.84.12.4054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Louie D., Serwer P. A hybrid mode of rotating gel electrophoresis for separating linear and circular duplex DNA. Appl Theor Electrophor. 1989;1(3):169–173. [PubMed] [Google Scholar]
  20. Masterson R. V., Prakash R. K., Atherly A. G. Conservation of symbiotic nitrogen fixation gene sequences in Rhizobium japonicum and Bradyrhizobium japonicum. J Bacteriol. 1985 Jul;163(1):21–26. doi: 10.1128/jb.163.1.21-26.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mathew M. K., Hui C. F., Smith C. L., Cantor C. R. High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 4. Influence of DNA topology. Biochemistry. 1988 Dec 27;27(26):9222–9226. doi: 10.1021/bi00426a022. [DOI] [PubMed] [Google Scholar]
  22. McClelland M., Hanish J., Nelson M., Patel Y. KGB: a single buffer for all restriction endonucleases. Nucleic Acids Res. 1988 Jan 11;16(1):364–364. doi: 10.1093/nar/16.1.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McClelland M., Jones R., Patel Y., Nelson M. Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res. 1987 Aug 11;15(15):5985–6005. doi: 10.1093/nar/15.15.5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982 Jan;149(1):114–122. doi: 10.1128/jb.149.1.114-122.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ruvkun G. B., Long S. R., Meade H. M., van den Bos R. C., Ausubel F. M. ISRm1: A Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. J Mol Appl Genet. 1982;1(5):405–418. [PubMed] [Google Scholar]
  26. Sadowsky M. J., Tully R. E., Cregan P. B., Keyser H. H. Genetic Diversity in Bradyrhizobium japonicum Serogroup 123 and Its Relation to Genotype-Specific Nodulation of Soybean. Appl Environ Microbiol. 1987 Nov;53(11):2624–2630. doi: 10.1128/aem.53.11.2624-2630.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  28. Serwer P. The mechanism of DNA's fractionation during pulsed-field agarose gel electrophoresis: a hypothesis. Appl Theor Electrophor. 1988;1(1):19–22. [PubMed] [Google Scholar]
  29. Simske J. S., Scherer S. Pulsed-field gel electrophoresis of circular DNA. Nucleic Acids Res. 1989 Jun 12;17(11):4359–4365. doi: 10.1093/nar/17.11.4359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sobral B. W., Atherly A. G. Pulse time and agarose concentration affect the electrophoretic mobility of cccDNA during PFGE and FIGE [corrected]. Nucleic Acids Res. 1989 Sep 25;17(18):7359–7369. doi: 10.1093/nar/17.18.7359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sobral B. W., Honeycutt R. J., Atherly A. G. The genomes of the family Rhizobiaceae: size, stability, and rarely cutting restriction endonucleases. J Bacteriol. 1991 Jan;173(2):704–709. doi: 10.1128/jb.173.2.704-709.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sobral B. W., Sadowsky M. J., Atherly A. G. Genome analysis of Bradyrhizobium japonicum serocluster 123 field isolates by using field inversion gel electrophoresis. Appl Environ Microbiol. 1990 Jun;56(6):1949–1953. doi: 10.1128/aem.56.6.1949-1953.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Southern E. M., Anand R., Brown W. R., Fletcher D. S. A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Res. 1987 Aug 11;15(15):5925–5943. doi: 10.1093/nar/15.15.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stanfield S. W., Ielpi L., O'Brochta D., Helinski D. R., Ditta G. S. The ndvA gene product of Rhizobium meliloti is required for beta-(1----2)glucan production and has homology to the ATP-binding export protein HlyB. J Bacteriol. 1988 Aug;170(8):3523–3530. doi: 10.1128/jb.170.8.3523-3530.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watson R. J., Chan Y. K., Wheatcroft R., Yang A. F., Han S. H. Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J Bacteriol. 1988 Feb;170(2):927–934. doi: 10.1128/jb.170.2.927-934.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES