Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Sep;173(18):5612–5618. doi: 10.1128/jb.173.18.5612-5618.1991

sxy-1, a Haemophilus influenzae mutation causing greatly enhanced spontaneous competence.

R J Redfield 1
PMCID: PMC208288  PMID: 1653215

Abstract

A Haemophilus influenzae strain carrying a competence-enhancing mutation (sxy-1) was selected by transformation of a mutagenized culture in exponential growth at low cell density, where spontaneous competence is very rare. Under these conditions, sxy-1 cells spontaneously transformed 100 to 1,000 times more efficiently than wild-type cells. Moreover, sxy-1 cells responded to all known competence-inducing treatments with further increases in transformation frequency. At high cell densities, sxy-1 cells spontaneously developed the level of competence reached by wild-type cells only after maximal induction by transfer to starvation medium. The sxy-1 mutation appears to act early in the sequence of events leading to competence; it increased the competence of cells carrying the early-acting transformation-defective (Tfo-) mutation tfo-98 by as large a factor as it did the competence of wild-type cells, but it had no effect when combined with another early-acting Tfo- mutation (tfo-87) or with the late-acting Tfo- mutation rec-2.

Full text

PDF
5617

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER H. E., LEIDY G. Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells. J Exp Med. 1951 Apr 1;93(4):345–359. doi: 10.1084/jem.93.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barouki R., Smith H. O. Reexamination of phenotypic defects in rec-1 and rec-2 mutants of Haemophilus influenzae Rd. J Bacteriol. 1985 Aug;163(2):629–634. doi: 10.1128/jb.163.2.629-634.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boling M. E., Setlow J. K. Dependence of Vegetative Recombination Among Haemophilus influenzae Bacteriophage on the Host Cell. J Virol. 1969 Sep;4(3):240–243. doi: 10.1128/jvi.4.3.240-243.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandler M. S. New shuttle vectors for Haemophilus influenzae and Escherichia coli: P15A-derived plasmids replicate in H. influenzae Rd. Plasmid. 1991 May;25(3):221–224. doi: 10.1016/0147-619x(91)90016-p. [DOI] [PubMed] [Google Scholar]
  5. GOODGAL S. H., HERRIOTT R. M. Studies on transformations of Hemophilus influenzae. I. Competence. J Gen Physiol. 1961 Jul;44:1201–1227. doi: 10.1085/jgp.44.6.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Herriott R. M., Meyer E. M., Vogt M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol. 1970 Feb;101(2):517–524. doi: 10.1128/jb.101.2.517-524.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lacks S., Greenberg B. Competence for deoxyribonucleic acid uptake and deoxyribonuclease action external to cells in the genetic transformation of Diplococcus pneumoniae. J Bacteriol. 1973 Apr;114(1):152–163. doi: 10.1128/jb.114.1.152-163.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee J. J., Smith H. O., Redfield R. J. Organization of the Haemophilus influenzae Rd genome. J Bacteriol. 1989 Jun;171(6):3016–3024. doi: 10.1128/jb.171.6.3016-3024.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Martinez E., Bartolomé B., de la Cruz F. pACYC184-derived cloning vectors containing the multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene. 1988 Aug 15;68(1):159–162. doi: 10.1016/0378-1119(88)90608-7. [DOI] [PubMed] [Google Scholar]
  10. McCarthy D. Cloning of the rec-2 locus of Haemophilus influenzae. Gene. 1989 Jan 30;75(1):135–143. doi: 10.1016/0378-1119(89)90390-9. [DOI] [PubMed] [Google Scholar]
  11. Ranhand J. M., Lichstein H. C. Effect of selected antibiotics and other inhibitors on competence development in Haemophilus influenzae. J Gen Microbiol. 1969 Jan;55(1):37–43. doi: 10.1099/00221287-55-1-37. [DOI] [PubMed] [Google Scholar]
  12. Redfield R. J. Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics. 1988 May;119(1):213–221. doi: 10.1093/genetics/119.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Setlow J. K., Boling M. E., Beattie K. L., Kimball R. F. A complex of recombination and repair genes in Haemophilus influenzae. J Mol Biol. 1972 Jul 21;68(2):361–378. doi: 10.1016/0022-2836(72)90218-5. [DOI] [PubMed] [Google Scholar]
  14. Setlow J. K., Notani N. K., McCarthy D., Clayton N. L. Transformation of Haemophilus influenzae by plasmid RSF0885 containing a cloned segment of chromosomal deoxyribonucleic acid. J Bacteriol. 1981 Dec;148(3):804–811. doi: 10.1128/jb.148.3.804-811.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stewart G. J., Carlson C. A. The biology of natural transformation. Annu Rev Microbiol. 1986;40:211–235. doi: 10.1146/annurev.mi.40.100186.001235. [DOI] [PubMed] [Google Scholar]
  16. Stuy J. H. Effect of glycerol on Haemophilus influenzae transfection. J Bacteriol. 1986 Apr;166(1):285–289. doi: 10.1128/jb.166.1.285-289.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tomb J. F., Barcak G. J., Chandler M. S., Redfield R. J., Smith H. O. Transposon mutagenesis, characterization, and cloning of transformation genes of Haemophilus influenzae Rd. J Bacteriol. 1989 Jul;171(7):3796–3802. doi: 10.1128/jb.171.7.3796-3802.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Walter R. B., Stuy J. H. Isolation and characterization of a UV-sensitive mutator (mutB1) mutant of Haemophilus influenzae. J Bacteriol. 1988 Jun;170(6):2537–2542. doi: 10.1128/jb.170.6.2537-2542.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]
  20. Wise E. M., Jr, Alexander S. P., Powers M. Adenosine 3':5'-cyclic monophosphate as a regulator of bacterial transformation. Proc Natl Acad Sci U S A. 1973 Feb;70(2):471–474. doi: 10.1073/pnas.70.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wojciechowski M. F., Hoelzer M. A., Michod R. E. DNA repair and the evolution of transformation in Bacillus subtilis. II. Role of inducible repair. Genetics. 1989 Mar;121(3):411–422. doi: 10.1093/genetics/121.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zoon K. C., Habersat M., Scocca J. J. Multiple regulatory events in the development of competence for genetic transformation in Haemophilus influenzae. J Bacteriol. 1975 Dec;124(3):1607–1609. doi: 10.1128/jb.124.3.1607-1609.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES