Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Jun;172(6):2970–2978. doi: 10.1128/jb.172.6.2970-2978.1990

Characterization of transposon insertion out- mutants of Erwinia carotovora subsp. carotovora defective in enzyme export and of a DNA segment that complements out mutations in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Erwinia chrysanthemi.

H Murata 1, M Fons 1, A Chatterjee 1, A Collmer 1, A K Chatterjee 1
PMCID: PMC209096  PMID: 2160934

Abstract

Soft-rotting Erwinia spp. export degradative enzymes to the cell exterior (Out+), a process contributing to their ability to macerate plant tissues. Transposon (Tn5, Tn10, Tn10-lacZ) insertion Out- mutants were obtained in Erwinia carotovora subsp. carotovora 71 by using plasmid and bacteriophage lambda delivery systems. In these mutants, pectate lyases, polygalacturonase, and cellulase, which are normally excreted into the growth medium, accumulated in the periplasm. However, localization of the extracellular protease was not affected. The Out- mutants were impaired in their ability to macerate potato tuber tissue. Out+ clones were identified in a cosmid library of E. carotovora subsp. carotovora 71 by their ability to complement mutants. Localization of cyclic phosphodiesterase in the periplasm indicated that the Out+ plasmids did not cause lysis or a nonspecific protein release. The Out+ derivatives of the E. carotovora subsp. carotovora 71 mutants regained the ability to macerate potato tuber tissue. Our data indicate that a cluster of several genes is required for the Out+ phenotype. While one plasmid, pAKC260, restored the Out+ phenotype in each of the 31 mutants of E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Erwinia chrysanthemi, it failed to render Escherichia coli export proficient. Homologs of E. carotovora subsp. carotovora 71 out DNA were detected by Southern hybridizations in subspecies of E. carotovora under high-stringency conditions. In contrast, E. chrysanthemi sequences bearing homology to the E. carotovora subsp. carotovora 71 out DNA were detectable only under low-stringency hybridization. Thus, although the out genes are functional in these two soft-rotting bacterial groups, the genes appear to have diverged.

Full text

PDF
2971

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andro T., Chambost J. P., Kotoujansky A., Cattaneo J., Bertheau Y., Barras F., Van Gijsegem F., Coleno A. Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. J Bacteriol. 1984 Dec;160(3):1199–1203. doi: 10.1128/jb.160.3.1199-1203.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barras F., Thurn K. K., Chatterjee A. K. Resolution of four pectate lyase structural genes of Erwinia chrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli. Mol Gen Genet. 1987 Sep;209(2):319–325. doi: 10.1007/BF00329660. [DOI] [PubMed] [Google Scholar]
  3. Chatterjee A. K. Acceptance by Erwinia spp. of R plasmid R68.45 and its ability to mobilize the chromosome of Erwinia chrysanthemi. J Bacteriol. 1980 Apr;142(1):111–119. doi: 10.1128/jb.142.1.111-119.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chatterjee A. K., Buchanan G. E., Behrens M. K., Starr M. P. Synthesis and excretion of polygalacturonic acid trans-eliminase in Erwinia, Yersinia, and Klebsiella species. Can J Microbiol. 1979 Jan;25(1):94–102. doi: 10.1139/m79-014. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee A. K., Starr M. P. Donor strains of the soft-rot bacterium Erwinia chrysanthemi and conjugational transfer of the pectolytic capacity. J Bacteriol. 1977 Dec;132(3):862–869. doi: 10.1128/jb.132.3.862-869.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chatterjee A. K., Starr M. P. Genetic transfer of episomic elements among Erwinia species and other enterobacteria: F'Lac+. J Bacteriol. 1972 Jul;111(1):169–176. doi: 10.1128/jb.111.1.169-176.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chatterjee A. K., Thurn K. K., Feese D. A. Tn5-Induced Mutations in the Enterobacterial Phytopathogen Erwinia chrysanthemi. Appl Environ Microbiol. 1983 Feb;45(2):644–650. doi: 10.1128/aem.45.2.644-650.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clement J. M., Perrin D., Hedgpeth J. Analysis of lambda receptor and beta-lactamase synthesis and export using cloned genes in a minicell system. Mol Gen Genet. 1982;185(2):302–310. doi: 10.1007/BF00330802. [DOI] [PubMed] [Google Scholar]
  9. Crouse G. F., Frischauf A., Lehrach H. An integrated and simplified approach to cloning into plasmids and single-stranded phages. Methods Enzymol. 1983;101:78–89. doi: 10.1016/0076-6879(83)01006-x. [DOI] [PubMed] [Google Scholar]
  10. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hinton J. C., Salmond G. P. Use of TnphoA to enrich for extracellular enzyme mutants of Erwinia carotovora subspecies carotovora. Mol Microbiol. 1987 Nov;1(3):381–386. doi: 10.1111/j.1365-2958.1987.tb01946.x. [DOI] [PubMed] [Google Scholar]
  12. Hirsch P. R., Beringer J. E. A physical map of pPH1JI and pJB4JI. Plasmid. 1984 Sep;12(2):139–141. doi: 10.1016/0147-619x(84)90059-3. [DOI] [PubMed] [Google Scholar]
  13. Hirst T. R., Welch R. A. Mechanisms for secretion of extracellular proteins by gram-negative bacteria. Trends Biochem Sci. 1988 Jul;13(7):265–269. doi: 10.1016/0968-0004(88)90160-0. [DOI] [PubMed] [Google Scholar]
  14. Hung W. T., Fu C. C., Wong J. O., Talbot A. R., Tsai M. H. Percutaneous cervical central venous placement: an evaluation from neck vein routes. Ma Zui Xue Za Zhi. 1988 Jun;26(2):199–206. [PubMed] [Google Scholar]
  15. Ji J., Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. Molecular cloning of the outJ gene involved in pectate lyase secretion by Erwinia chrysanthemi. Mol Microbiol. 1989 Mar;3(3):285–293. doi: 10.1111/j.1365-2958.1989.tb00173.x. [DOI] [PubMed] [Google Scholar]
  16. Keen N. T., Dahlbeck D., Staskawicz B., Belser W. Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. J Bacteriol. 1984 Sep;159(3):825–831. doi: 10.1128/jb.159.3.825-831.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  18. Payne J. H., Schoedel C., Keen N. T., Collmer A. Multiplication and Virulence in Plant Tissues of Escherichia coli Clones Producing Pectate Lyase Isozymes PLb and PLe at High Levels and of an Erwinia chrysanthemi Mutant Deficient in PLe. Appl Environ Microbiol. 1987 Oct;53(10):2315–2320. doi: 10.1128/aem.53.10.2315-2320.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pugsley A. P., Schwartz M. Colicin E2 release: lysis, leakage or secretion? Possible role of a phospholipase. EMBO J. 1984 Oct;3(10):2393–2397. doi: 10.1002/j.1460-2075.1984.tb02145.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schell M. A., Roberts D. P., Denny T. P. Analysis of the Pseudomonas solanacearum polygalacturonase encoded by pglA and its involvement in phytopathogenicity. J Bacteriol. 1988 Oct;170(10):4501–4508. doi: 10.1128/jb.170.10.4501-4508.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Selvaraj G., Fong Y. C., Iyer V. N. A portable DNA sequence carrying the cohesive site (cos) of bacteriophage lambda and the mob (mobilization) region of the broad-host-range plasmid RK2: a module for the construction of new cosmids. Gene. 1984 Dec;32(1-2):235–241. doi: 10.1016/0378-1119(84)90051-9. [DOI] [PubMed] [Google Scholar]
  22. Stoker N. G., Fairweather N. F., Spratt B. G. Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene. 1982 Jun;18(3):335–341. doi: 10.1016/0378-1119(82)90172-x. [DOI] [PubMed] [Google Scholar]
  23. Thurn K. K., Chatterjee A. K. Single-site chromosomal Tn5 insertions affect the export of pectolytic and cellulolytic enzymes in Erwinia chrysanthemi EC16. Appl Environ Microbiol. 1985 Oct;50(4):894–898. doi: 10.1128/aem.50.4.894-898.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wandersman C., Delepelaire P., Letoffe S., Schwartz M. Characterization of Erwinia chrysanthemi extracellular proteases: cloning and expression of the protease genes in Escherichia coli. J Bacteriol. 1987 Nov;169(11):5046–5053. doi: 10.1128/jb.169.11.5046-5053.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]
  26. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem. 1976 Jul;74(1):160–170. doi: 10.1016/0003-2697(76)90320-1. [DOI] [PubMed] [Google Scholar]
  27. Zink R. T., Kemble R. J., Chatterjee A. K. Transposon Tn5 mutagenesis in Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica. J Bacteriol. 1984 Mar;157(3):809–814. doi: 10.1128/jb.157.3.809-814.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES