Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Jun;172(6):3444–3449. doi: 10.1128/jb.172.6.3444-3449.1990

Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms.

N Gollop 1, B Damri 1, D M Chipman 1, Z Barak 1
PMCID: PMC209156  PMID: 2345154

Abstract

Acetohydroxy acid synthase (AHAS; EC 4.1.3.18) catalyzes the following two parallel, physiologically important reactions: condensation of two molecules of pyruvate to form acetolactate (AL), in the pathway to valine and leucine, and condensation of pyruvate plus 2-ketobutyrate to form acetohydroxybutyrate (AHB), in the pathway to isoleucine. We have determined the specificity ratio R with regard to these two reactions (where VAHB and VAL are rates of formation of the respective products) as follows: VAHB/VAL = R [2-ketobutyrate]/[pyruvate] for 14 enzymes from 10 procaryotic and eucaryotic organisms. Each organism considered has at least one AHAS of R greater than 20, and some appear to contain but a single biosynthetic AHAS. The implications of this for the design of the pathway are discussed. The selective pressure for high specificity for 2-ketobutyrate versus pyruvate implies that the 2-ketobutyrate concentration is much lower than the pyruvate concentration in all these organisms. It seems important for 2-ketobutyrate levels to be relatively low to avoid a variety of metabolic interferences. These results also reinforce the conclusion that biosynthetic AHAS isozymes of low R (1 to 2) are a special adaptation for heterotrophic growth on certain poor carbon sources. Two catabolic "pH 6 AL-synthesizing enzymes" are shown to be highly specific for AL formation only (R less than 0.1).

Full text

PDF
3445

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada Y., Okuzawa Y., Yamaguchi K. The existence of three types of acetohydroxy acid synthetase in an isoleucine-requiring mutant of Aerobacter aerogenes. Biochim Biophys Acta. 1976 May 13;429(3):1029–1035. doi: 10.1016/0005-2744(76)90347-8. [DOI] [PubMed] [Google Scholar]
  2. BAUERLE R. H., FRUENDLICH M., STORMER F. C., UMBARGER H. E. CONTROL OF ISOLEUCINE, VALINE AND LEUCINE BIOSYNTHESIS. II. ENDPRODUCT INHIBITION BY VALINE OF ACETOHYDROXY ACID SYNTHETASE IN SALMONELLA TYPHIMURIUM. Biochim Biophys Acta. 1964 Oct 23;92:142–149. [PubMed] [Google Scholar]
  3. Barak Z., Calvo J. M., Schloss J. V. Acetolactate synthase isozyme III from Escherichia coli. Methods Enzymol. 1988;166:455–458. doi: 10.1016/s0076-6879(88)66059-9. [DOI] [PubMed] [Google Scholar]
  4. Barak Z., Chipman D. M., Gollop N. Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J Bacteriol. 1987 Aug;169(8):3750–3756. doi: 10.1128/jb.169.8.3750-3756.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dailey F. E., Cronan J. E., Jr Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source. J Bacteriol. 1986 Feb;165(2):453–460. doi: 10.1128/jb.165.2.453-460.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dailey F. E., Cronan J. E., Jr, Maloy S. R. Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids. J Bacteriol. 1987 Feb;169(2):917–919. doi: 10.1128/jb.169.2.917-919.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniel J., Dondon L., Danchin A. 2-Ketobutyrate: a putative alarmone of Escherichia coli. Mol Gen Genet. 1983;190(3):452–458. doi: 10.1007/BF00331076. [DOI] [PubMed] [Google Scholar]
  8. EDDY B. P. The Voges-Proskauer reaction and its significance: a review. J Appl Bacteriol. 1961 Apr;24:27–41. doi: 10.1111/j.1365-2672.1961.tb00230.x. [DOI] [PubMed] [Google Scholar]
  9. Falco S. C., Dumas K. S. Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics. 1985 Jan;109(1):21–35. doi: 10.1093/genetics/109.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fersht A. R., Shindler J. S., Tsui W. C. Probing the limits of protein-amino acid side chain recognition with the aminoacyl-tRNA synthetases. Discrimination against phenylalanine by tyrosyl-tRNA synthetases. Biochemistry. 1980 Nov 25;19(24):5520–5524. doi: 10.1021/bi00565a009. [DOI] [PubMed] [Google Scholar]
  11. Gollop N., Barak Z., Chipman D. M. A method for simultaneous determination of the two possible products of acetohydroxy acid synthase. Anal Biochem. 1987 Feb 1;160(2):323–331. doi: 10.1016/0003-2697(87)90054-6. [DOI] [PubMed] [Google Scholar]
  12. Gollop N., Barak Z., Chipman D. M. Assay of products of acetolactate synthase. Methods Enzymol. 1988;166:234–240. doi: 10.1016/s0076-6879(88)66031-9. [DOI] [PubMed] [Google Scholar]
  13. Gollop N., Chipman D. M., Barak Z. Inhibition of acetohydroxy acid synthase by leucine. Biochim Biophys Acta. 1983 Oct 17;748(1):34–39. doi: 10.1016/0167-4838(83)90024-9. [DOI] [PubMed] [Google Scholar]
  14. Gollop N., Damri B., Barak Z., Chipman D. M. Kinetics and mechanism of acetohydroxy acid synthase isozyme III from Escherichia coli. Biochemistry. 1989 Jul 25;28(15):6310–6317. doi: 10.1021/bi00441a024. [DOI] [PubMed] [Google Scholar]
  15. Guarente L., Lauer G., Roberts T. M., Ptashne M. Improved methods for maximizing expression of a cloned gene: a bacterium that synthesizes rabbit beta-globin. Cell. 1980 Jun;20(2):543–553. doi: 10.1016/0092-8674(80)90640-6. [DOI] [PubMed] [Google Scholar]
  16. HALPERN Y. S., UMBARGER H. E. Evidence for two distinct enzyme systems forming acetolactate in Aerobacter aerogenes. J Biol Chem. 1959 Dec;234:3067–3071. [PubMed] [Google Scholar]
  17. Harms E., Hsu J. H., Subrahmanyam C. S., Umbarger H. E. Comparison of the regulatory regions of ilvGEDA operons from several enteric organisms. J Bacteriol. 1985 Oct;164(1):207–216. doi: 10.1128/jb.164.1.207-216.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holtzclaw W. D., Chapman L. F. Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol. 1975 Mar;121(3):917–922. doi: 10.1128/jb.121.3.917-922.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johansen L., Bryn K., Stormer F. C. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J Bacteriol. 1975 Sep;123(3):1124–1130. doi: 10.1128/jb.123.3.1124-1130.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LaRossa R. A., Van Dyk T. K. Metabolic mayhem caused by 2-ketoacid imbalances. Bioessays. 1987 Sep;7(3):125–130. doi: 10.1002/bies.950070308. [DOI] [PubMed] [Google Scholar]
  21. LaRossa R. A., Van Dyk T. K., Smulski D. R. Toxic accumulation of alpha-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J Bacteriol. 1987 Apr;169(4):1372–1378. doi: 10.1128/jb.169.4.1372-1378.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lowry O. H., Carter J., Ward J. B., Glaser L. The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. J Biol Chem. 1971 Nov;246(21):6511–6521. [PubMed] [Google Scholar]
  23. Miflin B. J. The location of nitrite reductase and other enzymes related to amino Acid biosynthesis in the plastids of root and leaves. Plant Physiol. 1974 Oct;54(4):550–555. doi: 10.1104/pp.54.4.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Newman T., Friden P., Sutton A., Freundlich M. Cloning and expression of the ilvB gene of Escherichia coli K-12. Mol Gen Genet. 1982;186(3):378–384. doi: 10.1007/BF00729457. [DOI] [PubMed] [Google Scholar]
  25. Primerano D. A., Burns R. O. Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium. J Bacteriol. 1982 Jun;150(3):1202–1211. doi: 10.1128/jb.150.3.1202-1211.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ryan E. D., Kohlhaw G. B. Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol. 1974 Nov;120(2):631–637. doi: 10.1128/jb.120.2.631-637.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schloss J. V., Van Dyk D. E., Vasta J. F., Kutny R. M. Purification and properties of Salmonella typhimurium acetolactate synthase isozyme II from Escherichia coli HB101/pDU9. Biochemistry. 1985 Aug 27;24(18):4952–4959. doi: 10.1021/bi00339a034. [DOI] [PubMed] [Google Scholar]
  28. Squires C. H., De Felice M., Wessler S. R., Calvo J. M. Physical characterization of the ilvHI operon of Escherichia coli K-12. J Bacteriol. 1981 Sep;147(3):797–804. doi: 10.1128/jb.147.3.797-804.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stormer F. C. Evidence for induction of the 2,3-butanediol-forming enzymes in Aerobacter aerogenes. FEBS Lett. 1968 Nov;2(1):36–38. doi: 10.1016/0014-5793(68)80094-8. [DOI] [PubMed] [Google Scholar]
  30. Störmer F. C. Isolation of crystalline pH 6 acetolactate-forming enzyme from Aerobacter aerogenes. J Biol Chem. 1967 Apr 25;242(8):1756–1759. [PubMed] [Google Scholar]
  31. Störmer F. C. The pH 6 acetolactate-forming enzyme from Aerobacter aerogenes. II. Evidence that it is not a flavoprotein. J Biol Chem. 1968 Jul 10;243(13):3740–3741. [PubMed] [Google Scholar]
  32. Szentirmai A., Horváth I. Regulation of branched-chain amino acid biosynthesis. Acta Microbiol Acad Sci Hung. 1976;23(2):137–149. [PubMed] [Google Scholar]
  33. Tanaka H., Kuwana H. A basal unit of valine-sensitive acetolactate synthase of Neurospora crassa. Biochem Biophys Res Commun. 1984 Sep 17;123(2):418–423. doi: 10.1016/0006-291x(84)90246-8. [DOI] [PubMed] [Google Scholar]
  34. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  35. Vogelstein B., Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979 Feb;76(2):615–619. doi: 10.1073/pnas.76.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES