Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Jan;171(1):303–307. doi: 10.1128/jb.171.1.303-307.1989

Mutations in uvrD induce the SOS response in Escherichia coli.

N Ossanna 1, D W Mount 1
PMCID: PMC209587  PMID: 2536658

Abstract

We have isolated three new mutations in uvrD that increase expression of the Escherichia coli SOS response in the absence of DNA damage. Like other uvrD (DNA helicase II) mutants, these strains are sensitive to UV irradiation and have high spontaneous mutation frequencies. Complementation studies with uvrD+ showed that UV sensitivity and spontaneous mutator activity were recessive in these new mutants. The SOS-induction phenotype, however, was not completely complemented, which indicated that the mutant proteins were functioning in some capacity. The viability of one of the mutants in combination with rep-5 suggests that the protein is functional in DNA replication. We suggest that these mutant proteins are deficient in DNA repair activities (since UV sensitivity is complemented) but are able to participate in DNA replication. We believe that defective DNA replication in these mutants increases SOS expression.

Full text

PDF
303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker T. A., Howe M. M., Gross C. A. Mu dX, a derivative of Mu d1 (lac Apr) which makes stable lacZ fusions at high temperature. J Bacteriol. 1983 Nov;156(2):970–974. doi: 10.1128/jb.156.2.970-974.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chaudhury A. M., Smith G. R. Role of Escherichia coli RecBC enzyme in SOS induction. Mol Gen Genet. 1985;201(3):525–528. doi: 10.1007/BF00331350. [DOI] [PubMed] [Google Scholar]
  5. Cox E. C. Bacterial mutator genes and the control of spontaneous mutation. Annu Rev Genet. 1976;10:135–156. doi: 10.1146/annurev.ge.10.120176.001031. [DOI] [PubMed] [Google Scholar]
  6. Craig N. L., Roberts J. W. E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature. 1980 Jan 3;283(5742):26–30. doi: 10.1038/283026a0. [DOI] [PubMed] [Google Scholar]
  7. Glickman B. W., Radman M. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1063–1067. doi: 10.1073/pnas.77.2.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glickman B. W. Spontaneous mutagenesis in Escherichia coli strains lacking 6-methyladenine residues in their DNA: an altered mutational spectrum in dam- mutants. Mutat Res. 1979 Jul;61(2):153–162. doi: 10.1016/0027-5107(79)90122-2. [DOI] [PubMed] [Google Scholar]
  9. Horii Z., Clark A. J. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol. 1973 Oct 25;80(2):327–344. doi: 10.1016/0022-2836(73)90176-9. [DOI] [PubMed] [Google Scholar]
  10. LeBowitz J. H., McMacken R. The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem. 1986 Apr 5;261(10):4738–4748. [PubMed] [Google Scholar]
  11. Maples V. F., Kushner S. R. DNA repair in Escherichia coli: identification of the uvrD gene product. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5616–5620. doi: 10.1073/pnas.79.18.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matson S. W. Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3' to 5' direction. J Biol Chem. 1986 Aug 5;261(22):10169–10175. [PubMed] [Google Scholar]
  13. Oeda K., Horiuchi T., Sekiguchi M. The uvrD gene of E. coli encodes a DNA-dependent ATPase. Nature. 1982 Jul 1;298(5869):98–100. doi: 10.1038/298098a0. [DOI] [PubMed] [Google Scholar]
  14. Ogawa H., Shimada K., Tomizawa J. Studies on radiation-sensitive mutants of E. coli. I. Mutants defective in the repair synthesis. Mol Gen Genet. 1968 May 3;101(3):227–244. doi: 10.1007/BF00271625. [DOI] [PubMed] [Google Scholar]
  15. Peterson K. R., Ossanna N., Thliveris A. T., Ennis D. G., Mount D. W. Derepression of specific genes promotes DNA repair and mutagenesis in Escherichia coli. J Bacteriol. 1988 Jan;170(1):1–4. doi: 10.1128/jb.170.1.1-4.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Siegel E. C. Complementation studies with the repair-deficient uvrD3, uvrE156, and recL152 mutations in Escherichia coli. Mol Gen Genet. 1981;184(3):526–530. doi: 10.1007/BF00352533. [DOI] [PubMed] [Google Scholar]
  17. Siegel E. C. The Escherichia coli uvrD gene is inducible by DNA damage. Mol Gen Genet. 1983;191(3):397–400. doi: 10.1007/BF00425753. [DOI] [PubMed] [Google Scholar]
  18. Siegel E. C. Ultraviolet-sensitive mutator strain of Escherichia coli K-12. J Bacteriol. 1973 Jan;113(1):145–160. doi: 10.1128/jb.113.1.145-160.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smirnov G. B., Skavronskaya A. G. Location of uvr502 mutation on the chromosome of Escherichia coli K-12. Mol Gen Genet. 1971;113(3):217–221. doi: 10.1007/BF00339541. [DOI] [PubMed] [Google Scholar]
  20. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES