Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Aug;171(8):4466–4471. doi: 10.1128/jb.171.8.4466-4471.1989

A new NAD+-dependent opine dehydrogenase from Arthrobacter sp. strain 1C.

Y Asano 1, K Yamaguchi 1, K Kondo 1
PMCID: PMC210226  PMID: 2753861

Abstract

A new NAD+-dependent opine dehydrogenase was purified to homogeneity from Arthrobacter sp. strain 1C isolated from soil by an enrichment culture technique. The enzyme has a molecular weight of about 70,000 and consists of two identical subunits with molecular weights of about 36,000. The enzyme catalyzed a reversible oxidation-reduction reaction of opine-type secondary amine dicarboxylic acids. In the oxidative deamination reaction, the enzyme was active toward unusual opines, such as N-[1-R-(carboxyl)ethyl]-S-methionine and N-[1-R-(carboxyl)ethyl]-S-phenylalanine. In the reductive secondary amine-forming reaction with NADH as a cofactor, the enzyme utilized L-amino acids such as L-methionine, L-isoleucine, L-valine, L-phenylalanine, L-leucine, L-alanine, and L-threonine as amino donors and alpha-keto acids such as pyruvate, oxaloacetate, glyoxylate, and alpha-ketobutyrate as amino acceptors. The product enzymatically synthesized from L-phenylalanine and pyruvate in the presence of NADH was identified as N-[1-R-(carboxyl)ethyl]-S-phenylalanine.

Full text

PDF
4470

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano Y., Nakazawa A., Endo K., Hibino Y., Ohmori M., Numao N., Kondo K. Phenylalanine dehydrogenase of Bacillus badius. Purification, characterization and gene cloning. Eur J Biochem. 1987 Oct 1;168(1):153–159. doi: 10.1111/j.1432-1033.1987.tb13399.x. [DOI] [PubMed] [Google Scholar]
  2. Asano Y., Nakazawa A., Endo K. Novel phenylalanine dehydrogenases from Sporosarcina ureae and Bacillus sphaericus. Purification and characterization. J Biol Chem. 1987 Jul 25;262(21):10346–10354. [PubMed] [Google Scholar]
  3. Asano Y., Sekigawa T., Inukai H., Nakazawa A. Purification and properties of formate dehydrogenase from Moraxella sp. strain C-1. J Bacteriol. 1988 Jul;170(7):3189–3193. doi: 10.1128/jb.170.7.3189-3193.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bates H. A., Kaushal A., Deng P. N., Sciaky D. Structure and synthesis of histopine, a histidine derivative produced by crown gall tumors. Biochemistry. 1984 Jul 3;23(14):3287–3290. doi: 10.1021/bi00309a026. [DOI] [PubMed] [Google Scholar]
  5. Chang C. C., Chen C. M., Adams B. R., Trost B. M. Leucinopine, a characteristic compound of some crown-gall tumors. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3573–3576. doi: 10.1073/pnas.80.12.3573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Greve H., Dhaese P., Seurinck J., Lemmers M., Van Montagu M., Schell J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet. 1982;1(6):499–511. [PubMed] [Google Scholar]
  7. Fields J. H., Eng A. K., Ramsden W. D., Hochachka P. W., Weinstein B. Alanopine and strombine are novel imino acids produced by a dehydrogenase found in the adductor muscle of the oyster, Crassostrea gigas. Arch Biochem Biophys. 1980 Apr 15;201(1):110–114. doi: 10.1016/0003-9861(80)90493-2. [DOI] [PubMed] [Google Scholar]
  8. Firmin J. L., Stewart I. M., Wilson K. E. N2-(1-carboxyethyl)methionine. A 'pseudo-opine' in octopine-type crown-gall tumours. Biochem J. 1985 Dec 1;232(2):431–434. doi: 10.1042/bj2320431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hack E., Kemp J. D. Comparison of octopine, histopine, lysopine, and octopinic acid synthesizing activities in sunflower crown gall tissues. Biochem Biophys Res Commun. 1977 Sep 23;78(2):785–791. doi: 10.1016/0006-291x(77)90248-0. [DOI] [PubMed] [Google Scholar]
  10. Hack E., Kemp J. D. Purification and Characterization of the Crown Gall-specific Enzyme, Octopine Synthase. Plant Physiol. 1980 May;65(5):949–955. doi: 10.1104/pp.65.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jubier M. -F. Degradation of lysopine by an inducible membrane-bound oxidase in Agrobacterium tumefaciens. FEBS Lett. 1972 Dec 1;28(2):129–132. doi: 10.1016/0014-5793(72)80693-8. [DOI] [PubMed] [Google Scholar]
  12. Kemp J. D., Sutton D. W., Hack E. Purification and characterization of the crown gall specific enzyme nopaline synthase. Biochemistry. 1979 Aug 21;18(17):3755–3760. doi: 10.1021/bi00584a017. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Misono H., Soda K. Properties of meso-alpha,epsilon-diaminopimelate D-dehydrogenase from Bacillus sphaericus. J Biol Chem. 1980 Nov 25;255(22):10599–10605. [PubMed] [Google Scholar]
  15. Montoya A. L., Chilton M. D., Gordon M. P., Sciaky D., Nester E. W. Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol. 1977 Jan;129(1):101–107. doi: 10.1128/jb.129.1.101-107.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Okazaki N., Hibino Y., Asano Y., Ohmori M., Numao N., Kondo K. Cloning and nucleotide sequencing of phenylalanine dehydrogenase gene of Bacillus sphaericus. Gene. 1988 Mar 31;63(2):337–341. doi: 10.1016/0378-1119(88)90537-9. [DOI] [PubMed] [Google Scholar]
  17. Otten L. A., Vreugdenhil D., Schilperoort R. A. Properties of D(+)-lysopine dehydrogenase from crown gall tumour tissue. Biochim Biophys Acta. 1977 Dec 8;485(2):268–277. doi: 10.1016/0005-2744(77)90163-2. [DOI] [PubMed] [Google Scholar]
  18. Schardl C. L., Kado C. I. A functional map of the nopaline catabolism genes on the Ti plasmid of Agrobacterium tumefaciens C58. Mol Gen Genet. 1983;191(1):10–16. doi: 10.1007/BF00330882. [DOI] [PubMed] [Google Scholar]
  19. Schrimsher J. L., Taylor K. B. Octopine dehydrogenase from crown gall tumor and from Pecten maximus. Oxidation of (4R)- and (4S)-[4-3H]NADH. J Biol Chem. 1982 Aug 10;257(15):8953–8956. [PubMed] [Google Scholar]
  20. Storey K. B., Storey J. M. Kinetic characterization of tissue-specific isozymes of octopine dehydrogenase from mantle muscle and brain of Sepia officinalis. Functional similarities to the M4 and H4 isozymes of lactate dehydrogenase. Eur J Biochem. 1979 Feb 1;93(3):545–542. doi: 10.1111/j.1432-1033.1979.tb12853.x. [DOI] [PubMed] [Google Scholar]
  21. Tremblay G., Gagliardo R., Chilton W. S., Dion P. Diversity among Opine-Utilizing Bacteria: Identification of Coryneform Isolates. Appl Environ Microbiol. 1987 Jul;53(7):1519–1524. doi: 10.1128/aem.53.7.1519-1524.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zettlmeissl G., Teschner W., Rudolph R., Jaenicke R., Gäde G. Isolation, physicochemical properties, and folding of octopine dehydrogenase from Pecten jacobaeus. Eur J Biochem. 1984 Sep 3;143(2):401–407. doi: 10.1111/j.1432-1033.1984.tb08387.x. [DOI] [PubMed] [Google Scholar]
  23. van Thoai N., Huc C., Pho D. B., Olomucki A. Octopine déshydrogénase. Purification et propriétés catalytiques. Biochim Biophys Acta. 1969 Sep 30;191(1):46–57. doi: 10.1016/0005-2744(69)90313-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES