Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Sep;171(9):5162–5164. doi: 10.1128/jb.171.9.5162-5164.1989

Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius.

R Skórko 1, J Osipiuk 1, K O Stetter 1
PMCID: PMC210331  PMID: 2549015

Abstract

Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing it separated into several spots in the pH range of 5.6 to 6.7.

Full text

PDF
5164

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
  2. Griffin J. B., Davidian N. M., Penniall R. Studies of phosphorus metabolism by isolated nuclei. VII. Identification of polyphosphate as a product. J Biol Chem. 1965 Nov;240(11):4427–4434. [PubMed] [Google Scholar]
  3. Harold F. M. Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev. 1966 Dec;30(4):772–794. doi: 10.1128/br.30.4.772-794.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heil A., Zillig W. Reconstitution of bacterial DNA-dependent RNA-polymerase from isolated subunits as a tool for the elucidation of the role of the subunits in transcription. FEBS Lett. 1970 Dec;11(3):165–168. doi: 10.1016/0014-5793(70)80519-1. [DOI] [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Li H. C., Brown G. G. Orthophosphate and histone dependent polyphosphate kinase from E. coli. Biochem Biophys Res Commun. 1973 Aug 6;53(3):875–881. doi: 10.1016/0006-291x(73)90174-5. [DOI] [PubMed] [Google Scholar]
  7. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  8. Robinson N. A., Goss N. H., Wood H. G. Polyphosphate kinase from Propionibacterium shermanii: formation of an enzymatically active insoluble complex with basic proteins and characterization of synthesized polyphosphate. Biochem Int. 1984 Jun;8(6):757–769. [PubMed] [Google Scholar]
  9. Robinson N. A., Wood H. G. Polyphosphate kinase from Propionibacterium shermanii. Demonstration that the synthesis and utilization of polyphosphate is by a processive mechanism. J Biol Chem. 1986 Apr 5;261(10):4481–4485. [PubMed] [Google Scholar]
  10. Wood H. G., Clark J. E. Biological aspects of inorganic polyphosphates. Annu Rev Biochem. 1988;57:235–260. doi: 10.1146/annurev.bi.57.070188.001315. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES