Abstract
The screening of a collection of highly mutagenized strains of Escherichia coli for defects in isoprenoid synthesis led to the isolation of a mutant that had temperature-sensitive farnesyl diphosphate synthase. The defective gene, named ispA, was mapped at about min 10 on the E. coli chromosome, and the gene order was shown to be tsx-ispA-lon. The mutant ispA gene was transferred to the E. coli strain with a defined genetic background by P1 transduction for investigation of its function. The in vitro activity of farnesyl diphosphate synthase of the mutant was 21% of that of the wild-type strain at 30 degrees C and 5% of that at 40 degrees C. At 42 degrees C the ubiquinone level was lower (66% of normal) in the mutant than in the wild-type strain, whereas at 30 degrees C the level in the mutant was almost equal to that in the wild-type strain. The polyprenyl phosphate level was slightly higher in the mutant than in the wild-type strain at 30 degrees C and almost the same in both strains at 42 degrees C. The mutant had no obvious phenotype regarding its growth properties.
Full text
PDF![5654](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9d/210410/cac15e3443ac/jbacter00176-0428.png)
![5655](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9d/210410/126e26d51744/jbacter00176-0429.png)
![5656](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9d/210410/b5e2076681e1/jbacter00176-0430.png)
![5657](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9d/210410/c1a8d0724c82/jbacter00176-0431.png)
![5658](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9d/210410/e6113b718965/jbacter00176-0432.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adair W. L., Jr, Cafmeyer N. Cell-cycle dependence of dolichyl phosphate biosynthesis. Arch Biochem Biophys. 1987 Nov 1;258(2):491–497. doi: 10.1016/0003-9861(87)90370-5. [DOI] [PubMed] [Google Scholar]
- BISHOP D. H., PANDYA K. P., KING H. K. Ubiquinone and vitamin K in bacteria. Biochem J. 1962 Jun;83:606–614. doi: 10.1042/bj0830606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980 Jul;21(5):505–517. [PubMed] [Google Scholar]
- Bruenger E., Rilling H. C. Determination of isopentenyl diphosphate and farnesyl diphosphate in tissue samples with a comment on secondary regulation of polyisoprenoid biosynthesis. Anal Biochem. 1988 Sep;173(2):321–327. doi: 10.1016/0003-2697(88)90196-0. [DOI] [PubMed] [Google Scholar]
- Chen Z., Morris C., Allen C. M. Changes in dehydrodolichyl diphosphate synthase during spermatogenesis in the rat. Arch Biochem Biophys. 1988 Oct;266(1):98–110. doi: 10.1016/0003-9861(88)90240-8. [DOI] [PubMed] [Google Scholar]
- Clarke C. F., Tanaka R. D., Svenson K., Wamsley M., Fogelman A. M., Edwards P. A. Molecular cloning and sequence of a cholesterol-repressible enzyme related to prenyltransferase in the isoprene biosynthetic pathway. Mol Cell Biol. 1987 Sep;7(9):3138–3146. doi: 10.1128/mcb.7.9.3138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins M. D., Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev. 1981 Jun;45(2):316–354. doi: 10.1128/mr.45.2.316-354.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crick D. C., Carroll K. K. Extraction and quantitation of total cholesterol, dolichol and dolichyl phosphate from mammalian liver. Lipids. 1987 Dec;22(12):1045–1048. doi: 10.1007/BF02536448. [DOI] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faust J. R., Goldstein J. L., Brown M. S. Squalene synthetase activity in human fibroblasts: regulation via the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5018–5022. doi: 10.1073/pnas.76.10.5018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujisaki S., Nishino T., Katsuki H. Biosynthesis of isoprenoids in intact cells of Escherichia coli. J Biochem. 1986 Apr;99(4):1137–1146. doi: 10.1093/oxfordjournals.jbchem.a135577. [DOI] [PubMed] [Google Scholar]
- Fujisaki S., Nishino T., Katsuki H. Isoprenoid synthesis in Escherichia coli. Separation and partial purification of four enzymes involved in the synthesis. J Biochem. 1986 May;99(5):1327–1337. doi: 10.1093/oxfordjournals.jbchem.a135600. [DOI] [PubMed] [Google Scholar]
- Hiraishi A. High-performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria. J Appl Bacteriol. 1988 Feb;64(2):103–105. doi: 10.1111/j.1365-2672.1988.tb02728.x. [DOI] [PubMed] [Google Scholar]
- Hirota Y., Gefter M., Mindich L. A mutant of Escherichia coli defective in DNA polymerase II activity. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3238–3242. doi: 10.1073/pnas.69.11.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KANDUTSCH A. A., PAULUS H., LEVIN E., BLOCH K. PURIFICATION OF GERANYLGERANYL PYROPHOSPHATE SYNTHETASE FROM MICROCOCCUS LYSODEIKTICUS. J Biol Chem. 1964 Aug;239:2507–2515. [PubMed] [Google Scholar]
- LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
- Raetz C. R. Isolation of Escherichia coli mutants defective in enzymes of membrane lipid synthesis. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2274–2278. doi: 10.1073/pnas.72.6.2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sagami H., Ogura K. Geranylgeranyl pyrophosphate synthetase lacking geranyl-transferring activity from Micrococcus luteus. J Biochem. 1981 May;89(5):1573–1580. doi: 10.1093/oxfordjournals.jbchem.a133351. [DOI] [PubMed] [Google Scholar]
- Sagami H., Ogura K., Seto S., Kurokawa T. A new prenyltransferase from Micrococcus lysodeikticus. Biochem Biophys Res Commun. 1978 Nov 29;85(2):572–578. doi: 10.1016/0006-291x(78)91201-9. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Nishimura Y., Hirota Y. On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc Natl Acad Sci U S A. 1978 Feb;75(2):664–668. doi: 10.1073/pnas.75.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi I., Ogura K. Farnesyl pyrophosphate synthetase from Bacillus subtilis. J Biochem. 1981 May;89(5):1581–1587. doi: 10.1093/oxfordjournals.jbchem.a133352. [DOI] [PubMed] [Google Scholar]
- Takahashi I., Ogura K. Prenyltransferases of Bacillus subtilis: undecaprenyl pyrophosphate synthetase and geranylgeranyl pyrophosphate synthetase. J Biochem. 1982 Nov;92(5):1527–1537. doi: 10.1093/oxfordjournals.jbchem.a134077. [DOI] [PubMed] [Google Scholar]
- Umbreit J. N., Strominger J. L. Isolation of the lipid intermediate in peptidoglycan biosynthesis from Escherichia coli. J Bacteriol. 1972 Dec;112(3):1306–1309. doi: 10.1128/jb.112.3.1306-1309.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]