Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Nov;171(11):6169–6173. doi: 10.1128/jb.171.11.6169-6173.1989

Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae.

R T Lorenz 1, W M Casey 1, L W Parks 1
PMCID: PMC210486  PMID: 2681155

Abstract

A Saccharomyces cerevisiae sterol auxotroph, SPK14 (a hem1 erg6 erg7 ura), was constructed to test the ability of selected C-5,6 unsaturated sterols at growth-limiting concentrations to spark growth on bulk cholestanol. The native sterol, ergosterol, initiated growth faster and allowed a greater cell yield than did other sterols selectively altered in one or more features of the sterol. Although the C-5,6 unsaturation is required for the sparking function, the presence of the C-22 unsaturation was found to facilitate sparking far better than did the C-7 unsaturation, whereas the C-24 methyl was the least important group. The addition of delta-aminolevulinic acid to the medium allowed the sparking of FY3 (hem1 erg7 ura) on bulk cholestanol due to the derepression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and the production of endogenous ergosterol. The optimal concentration of delta-aminolevulinic acid to spark growth was 800 ng/ml, whereas higher concentrations caused a growth inhibition. The growth yield of FY3 reached a plateau maximum at about 5 micrograms/ml when the bulk cholestanol was varied in the presence of 10 ng of sparking erogosterol per ml.

Full text

PDF
6172

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buttke T. M., Bloch K. Comparative responses of the yeast mutant strain GL7 to lanosterol, cycloartenol, and cyclolaudenol. Biochem Biophys Res Commun. 1980 Jan 15;92(1):229–236. doi: 10.1016/0006-291x(80)91543-0. [DOI] [PubMed] [Google Scholar]
  2. Buttke T. M., Jones S. D., Bloch K. Effect of sterol side chains on growth and membrane fatty acid composition of Saccharomyces cerevisiae. J Bacteriol. 1980 Oct;144(1):124–130. doi: 10.1128/jb.144.1.124-130.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dahl C. E., Dahl J. S., Bloch K. Effect of alkyl-substituted precursors of cholesterol on artificial and natural membranes and on the viability of Mycoplasma capricolum. Biochemistry. 1980 Apr 1;19(7):1462–1467. doi: 10.1021/bi00548a031. [DOI] [PubMed] [Google Scholar]
  4. Dahl C., Biemann H. P., Dahl J. A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: positive in vivo regulation by sterol. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4012–4016. doi: 10.1073/pnas.84.12.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahl J. S., Dahl C. E., Bloch K. Sterols in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. Biochemistry. 1980 Apr 1;19(7):1467–1472. doi: 10.1021/bi00548a032. [DOI] [PubMed] [Google Scholar]
  6. Dahl J. S., Dahl C. E. Stimulation of cell proliferation and polyphosphoinositide metabolism in Saccharomyces cerevisiae GL7 by ergosterol. Biochem Biophys Res Commun. 1985 Dec 31;133(3):844–850. doi: 10.1016/0006-291x(85)91211-2. [DOI] [PubMed] [Google Scholar]
  7. Gollub E. G., Liu K. P., Dayan J., Adlersberg M., Sprinson D. B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem. 1977 May 10;252(9):2846–2854. [PubMed] [Google Scholar]
  8. Hossack J. A., Rose A. H. Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols. J Bacteriol. 1976 Jul;127(1):67–75. doi: 10.1128/jb.127.1.67-75.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karst F., Lacroute F. Isolation of pleiotropic yeast mutants requiring ergosterol for growth. Biochem Biophys Res Commun. 1973 Jun 8;52(3):741–747. doi: 10.1016/0006-291x(73)90999-6. [DOI] [PubMed] [Google Scholar]
  10. Kawasaki S., Ramgopal M., Chin J., Bloch K. Sterol control of the phosphatidylethanolamine-phosphatidylcholine conversion in the yeast mutant GL7. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5715–5719. doi: 10.1073/pnas.82.17.5715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis T. A., Taylor F. R., Parks L. W. Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae. J Bacteriol. 1985 Jul;163(1):199–207. doi: 10.1128/jb.163.1.199-207.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lorenz R. T., Parks L. W. Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast. J Bacteriol. 1987 Aug;169(8):3707–3711. doi: 10.1128/jb.169.8.3707-3711.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lorenz R. T., Rodriguez R. J., Lewis T. A., Parks L. W. Characteristics of sterol uptake in Saccharomyces cerevisiae. J Bacteriol. 1986 Sep;167(3):981–985. doi: 10.1128/jb.167.3.981-985.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marzuki S., Linnane A. W. Modification of yeast mitochondria by diet in specific mutants. Methods Enzymol. 1979;56:568–577. doi: 10.1016/0076-6879(79)56055-8. [DOI] [PubMed] [Google Scholar]
  15. McCammon M. T., Hartmann M. A., Bottema C. D., Parks L. W. Sterol methylation in Saccharomyces cerevisiae. J Bacteriol. 1984 Feb;157(2):475–483. doi: 10.1128/jb.157.2.475-483.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Odriozola J. M., Waitzkin E., Smith T. L., Bloch K. Sterol requirement of Mycoplasma capricolum. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4107–4109. doi: 10.1073/pnas.75.9.4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parks L. W., Rodriguez R. J., Low C. An essential fungal growth factor derived from ergosterol: a new end product of sterol biosynthesis in fungi? Lipids. 1986 Jan;21(1):89–91. doi: 10.1007/BF02534308. [DOI] [PubMed] [Google Scholar]
  18. Pinto W. J., Lozano R., Sekula B. C., Nes W. R. Stereochemically distinct roles for sterol in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1983 Apr 15;112(1):47–54. doi: 10.1016/0006-291x(83)91795-3. [DOI] [PubMed] [Google Scholar]
  19. Pinto W. J., Nes W. R. Stereochemical specificity for sterols in Saccharomyces cerevisiae. J Biol Chem. 1983 Apr 10;258(7):4472–4476. [PubMed] [Google Scholar]
  20. Ramgopal M., Bloch K. Sterol synergism in yeast. Proc Natl Acad Sci U S A. 1983 Feb;80(3):712–715. doi: 10.1073/pnas.80.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rodriguez R. J., Low C., Bottema C. D., Parks L. W. Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta. 1985 Dec 4;837(3):336–343. doi: 10.1016/0005-2760(85)90057-8. [DOI] [PubMed] [Google Scholar]
  22. Rodriguez R. J., Parks L. W. Application of high-performance liquid chromatographic separation of free sterols to the screening of yeast sterol mutants. Anal Biochem. 1982 Jan 1;119(1):200–204. doi: 10.1016/0003-2697(82)90686-8. [DOI] [PubMed] [Google Scholar]
  23. Rodriguez R. J., Parks L. W. Structural and physiological features of sterols necessary to satisfy bulk membrane and sparking requirements in yeast sterol auxotrophs. Arch Biochem Biophys. 1983 Sep;225(2):861–871. doi: 10.1016/0003-9861(83)90099-1. [DOI] [PubMed] [Google Scholar]
  24. Rodriguez R. J., Taylor F. R., Parks L. W. A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholestanol. Biochem Biophys Res Commun. 1982 May 31;106(2):435–441. doi: 10.1016/0006-291x(82)91129-9. [DOI] [PubMed] [Google Scholar]
  25. Sekula B. C., Nes W. R. Metabolism of sterols by anaerobic Saccharomyces cerevisiae. Lipids. 1981 Mar;16(3):195–198. doi: 10.1007/BF02535438. [DOI] [PubMed] [Google Scholar]
  26. Shinabarger D. L., Keesler G. A., Parks L. W. Regulation by heme of sterol uptake in Saccharomyces cerevisiae. Steroids. 1989 Mar-May;53(3-5):607–623. doi: 10.1016/0039-128x(89)90035-4. [DOI] [PubMed] [Google Scholar]
  27. Taylor F. R., Parks L. W. Adaptation of Saccharomyces cerevisiae to growth on cholesterol: selection of mutants defective in the formation of lanosterol. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1437–1445. doi: 10.1016/s0006-291x(80)80058-1. [DOI] [PubMed] [Google Scholar]
  28. Taylor F. R., Parks L. W. An assessment of the specificity of sterol uptake and esterification in Saccharomyces cerevisiae. J Biol Chem. 1981 Dec 25;256(24):13048–13054. [PubMed] [Google Scholar]
  29. Thomas D. S., Hossack J. A., Rose A. H. Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch Microbiol. 1978 Jun 26;117(3):239–245. doi: 10.1007/BF00738541. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES