Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Feb;170(2):547–551. doi: 10.1128/jb.170.2.547-551.1988

Characterization of a DNA uptake reaction through the nuclear membrane of isolated yeast nuclei.

E Tsuchiya 1, S Shakuto 1, T Miyakawa 1, S Fukui 1
PMCID: PMC210688  PMID: 2828313

Abstract

Isolated yeast nuclei were able to incorporate 3H-labeled pJDB219 DNA in vitro in the presence of ATP and Mg2+. The number of plasmid molecules incorporated into each nucleus was calculated to be 60 under the conditions we used. Enzyme-histochemical staining of the incorporated biotinylated pJDB219 with streptavidin-biotinylated-peroxidase complex indicated a uniform distribution of the incorporated plasmids within each nucleus. After intranuclear incorporation, substrate pJDB219 DNAs (open and closed circular forms) were changed to the linear form and were weakly digested over the longer incubation period (over 60 min). Facile release of the once-incorporated plasmid DNA was never observable; discharge of the incorporated [3H]pJDB219 during a 60-min incubation was less than 5%. The addition of adenylyl-imidodiphosphate, N,N'-dicyclohexylcarbodiimide (DCCD), or quercetin inhibited in vitro DNA uptake reaction. DCCD and quercetin inhibited the nuclear ATPase and apparent protein kinase, respectively; hence, the involvement of these enzymes in the nuclear DNA transport system was suggested.

Full text

PDF
551

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agutter P. S., McArdle H. J., McCaldin B. Evidence for involvement of nuclear envelope nucleoside triphosphatase in nucleocytoplasmic translocation of ribonucleoprotein. Nature. 1976 Sep 9;263(5573):165–167. doi: 10.1038/263165a0. [DOI] [PubMed] [Google Scholar]
  2. Agutter P. S. Nucleocytoplasmic RNA transport. Subcell Biochem. 1984;10:281–357. doi: 10.1007/978-1-4613-2709-7_5. [DOI] [PubMed] [Google Scholar]
  3. Beggs J. D. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978 Sep 14;275(5676):104–109. doi: 10.1038/275104a0. [DOI] [PubMed] [Google Scholar]
  4. Clawson G. A., Koplitz M., Castler-Schechter B., Smuckler E. A. Energy utilization and RNA transport: their interdependence. Biochemistry. 1978 Sep 5;17(18):3747–3752. doi: 10.1021/bi00611a012. [DOI] [PubMed] [Google Scholar]
  5. Dingwall C., Laskey R. A. Protein import into the cell nucleus. Annu Rev Cell Biol. 1986;2:367–390. doi: 10.1146/annurev.cb.02.110186.002055. [DOI] [PubMed] [Google Scholar]
  6. Forster A. C., McInnes J. L., Skingle D. C., Symons R. H. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res. 1985 Feb 11;13(3):745–761. doi: 10.1093/nar/13.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hachmann H. J., Lezius A. G. An ATPase depending on the presence of single-stranded DNA from mouse myeloma. Eur J Biochem. 1976 Jan 15;61(2):325–330. doi: 10.1111/j.1432-1033.1976.tb10025.x. [DOI] [PubMed] [Google Scholar]
  8. Herlan G., Giese G., Wunderlich F. In vitro ribosomal ribonucleoprotein transport upon nuclear expansion. Biochemistry. 1980 Aug 19;19(17):3960–3966. doi: 10.1021/bi00558a011. [DOI] [PubMed] [Google Scholar]
  9. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  10. Kawamoto S., Hidaka H. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7) is a selective inhibitor of protein kinase C in rabbit platelets. Biochem Biophys Res Commun. 1984 Nov 30;125(1):258–264. doi: 10.1016/s0006-291x(84)80362-9. [DOI] [PubMed] [Google Scholar]
  11. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  12. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  13. Suzuki K., Imai Y., Yamashita I., Fukui S. In vivo ligation of linear DNA molecules to circular forms in the yeast Saccharomyces cerevisiae. J Bacteriol. 1983 Aug;155(2):747–754. doi: 10.1128/jb.155.2.747-754.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES