Abstract
The elaboration of enamel matrix glycoprotein was investigated in secretory ameloblasts of incisor teeth in 30–40-g rats. To this end, the distribution of glycoprotein was examined histochemically by the use of phosphotungstic acid at low pH, while the formation of glycoprotein was traced radioautographically in animals sacrificed 2.5–30 min after galactose-3H injection. Histochemically, the presence of glycoprotein is observed in ameloblasts as well as in the enamel matrix; in ameloblasts glycoprotein occurs within the Golgi apparatus in amounts increasing from the outer to the inner face of the stacks of saccules, and is concentrated in condensing vacuoles and secretory granules; in the enamel matrix, glycoprotein is observed within linear subunits. Radioautographs at 2.5 min after injection demonstrate the uptake of galactose-3H label by Golgi saccules, indicating that galactose-3H is incorporated into glycoprotein within this organelle. After 5–10 min, the label collects in the condensing vacuoles and secretory granules of the Golgi region. By 20–30 min, the label appears in the secretory granules of the apical (Tomes') processes, as well as in the enamel matrix (next to the distal end of the apical processes, and at the tips of matrix prongs). In conclusion, galactose contributes to the formation of glycoprotein within the Golgi apparatus. The innermost saccules then distribute the completed glycoprotein to condensing vacuoles, which later evolve into secretory granules. These granules rapidly migrate to the apical processes, where they discharge their glycoprotein content to the developing enamel.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BATTISTONE G. C., BURNETT G. W. Studies of the composition of teeth. V. Variations in the amino acid composition of dentin and enamel. J Dent Res. 1956 Apr;35(2):263–272. doi: 10.1177/00220345560350021701. [DOI] [PubMed] [Google Scholar]
- BURGESS R. C., NIKIFORUK G., MACLAREN C. Chromatographic studies of carbohydrate components in enamel. Arch Oral Biol. 1960 Dec;3:8–14. doi: 10.1016/0003-9969(60)90013-3. [DOI] [PubMed] [Google Scholar]
- BURNETT G. W., ZENEWITZ J. A. Studies of the composition of teeth. VIII. The composition of human teeth. J Dent Res. 1958 Aug;37(4):590–600. doi: 10.1177/00220345580370040401. [DOI] [PubMed] [Google Scholar]
- Bennett G. Migration of glycoprotein from golgi apparatus to cell coat in the columnar cells of the duodenal epithelium. J Cell Biol. 1970 Jun;45(3):668–673. doi: 10.1083/jcb.45.3.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark R. D., Smith J. G., Jr, Davidson E. A. Hexosamine and acid glycosaminoglycans in human teeth. Biochim Biophys Acta. 1965 Nov 1;101(3):267–272. doi: 10.1016/0926-6534(65)90004-7. [DOI] [PubMed] [Google Scholar]
- Coimbra A., Leblond C. P. Sites of glycogen synthesis in rat liver cells as shown by electron microscope radioautography after administration of glucose-H3. J Cell Biol. 1966 Jul;30(1):151–175. doi: 10.1083/jcb.30.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Droz B. Elaboration de glycoproteines dans l'appareil de Golgi des cellules hépatiques chez le rat; étude radioautographique en microscopie électronique après injection de glactose-3H. C R Acad Sci Hebd Seances Acad Sci D. 1966 Apr 18;262(16):1766–1768. [PubMed] [Google Scholar]
- EASTOE J. E. Organic matrix of tooth enamel. Nature. 1960 Jul 30;187:411–412. doi: 10.1038/187411b0. [DOI] [PubMed] [Google Scholar]
- EASTOE J. E. THE AMINO ACID COMPOSITION OF PROTEINS FROM THE ORAL TISSUES. II. THE MATRIX PROTEINS IN DENTINE AND ENAMEL FROM DEVELOPING HUMAN DECIDUOUS TEETH. Arch Oral Biol. 1963 Sep-Oct;8:633–652. doi: 10.1016/0003-9969(63)90078-5. [DOI] [PubMed] [Google Scholar]
- FEARNHEAD R. W. Mineralization of rat enamel. Nature. 1960 Nov 5;188:509–510. doi: 10.1038/188509a0. [DOI] [PubMed] [Google Scholar]
- Fleischer B., Fleischer S., Ozawa H. Isolation and characterization of Golgi membranes from bovine liver. J Cell Biol. 1969 Oct;43(1):59–79. doi: 10.1083/jcb.43.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLIMCHER M. J., MECHANIC G., BONAR L. C., DANIEL E. J. The amino acid composition of the organic matrix of decalcified fetal bovine dental enamel. J Biol Chem. 1961 Dec;236:3210–3213. [PubMed] [Google Scholar]
- GLIMCHER M. J., TRAVIS D. F., FRIBERG U. A., MECHANIC G. L. THE ELECTRON MICROSCOPIC LOCALIZATION OF THE NEUTRAL SOLUBLE PROTEINS OF DEVELOPING BOVINE ENAMEL. J Ultrastruct Res. 1964 Apr;10:362–376. doi: 10.1016/s0022-5320(64)80015-0. [DOI] [PubMed] [Google Scholar]
- Garant P. R., Nalbandian J. Observations on the ultrastructure of ameloblasts with special reference to the golgi complex and related components. J Ultrastruct Res. 1968 Jun;23(5):427–443. doi: 10.1016/s0022-5320(68)80108-x. [DOI] [PubMed] [Google Scholar]
- Glimcher M. J., Levine P. T. Studies of the proteins, peptides and free amino acids of mature bovine enamel. Biochem J. 1966 Mar;98(3):742–753. doi: 10.1042/bj0980742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glimcher M. J., Mechanic G. L., Friberg U. A. The amino acid composition of the organic matrix and the neutral-soluble and acid-soluble components of embryonic bovine enamel. Biochem J. 1964 Oct;93(1):198–202. doi: 10.1042/bj0930198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddad A., Smith M. D., Herscovics A., Nadler N. J., Leblond C. P. Radioautographic study of in vivo and in vitro incorporation of fucose-3H into thyroglobulin by rat thyroid follicular cells. J Cell Biol. 1971 Jun;49(3):856–877. doi: 10.1083/jcb.49.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jermyn M. A., Isherwood F. A. Improved separation of sugars on the paper partition chromatogram. Biochem J. 1949;44(4):402–407. doi: 10.1042/bj0440402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jessen H. Elliptical tubules as unit structure of forming enamel matrix in the rat. Arch Oral Biol. 1968 Mar;13(3):351–352. doi: 10.1016/0003-9969(68)90133-7. [DOI] [PubMed] [Google Scholar]
- KALCKAR H. M. Biochemical mutations in man and microorganisms. Science. 1957 Jan 18;125(3238):105–108. doi: 10.1126/science.125.3238.105. [DOI] [PubMed] [Google Scholar]
- KALCKAR H. M. Uridinediphospho galactose; metabolism, enzymology, and biology. Adv Enzymol Relat Subj Biochem. 1958;20:111–134. doi: 10.1002/9780470122655.ch4. [DOI] [PubMed] [Google Scholar]
- KRAUSS S., SARCIONE E. J. SYNTHESIS OF SERUM HAPTOGLOBIN BY THE ISOLATED PERFUSED RAT LIVER. Biochim Biophys Acta. 1964 Aug 19;90:301–308. doi: 10.1016/0304-4165(64)90193-x. [DOI] [PubMed] [Google Scholar]
- KUMAMOTO Y., LEBLOND C. P. Visualization of C14 in the tooth matrix after administration of labeled hexoses. J Dent Res. 1958 Feb;37(1):147–161. doi: 10.1177/00220345580370010901. [DOI] [PubMed] [Google Scholar]
- Kalckar H. M. Galactose metabolism and cell "sociology". Science. 1965 Oct 15;150(3694):305–313. doi: 10.1126/science.150.3694.305. [DOI] [PubMed] [Google Scholar]
- Kallenbach E. Fine structure of rat incisor enamel organ during late pigmentation and regression stages. J Ultrastruct Res. 1970 Jan;30(1):38–63. doi: 10.1016/s0022-5320(70)90063-8. [DOI] [PubMed] [Google Scholar]
- LOSEE F. L., HESS W. C. The chemical nature of the proteins from human enamel. J Dent Res. 1949 Oct;28(5):512–517. doi: 10.1177/00220345490280051401. [DOI] [PubMed] [Google Scholar]
- Leduc E. H., Bernhard W. Recent modifications of the glycol methacrylate embedding procedure. J Ultrastruct Res. 1967 Jul;19(1):196–199. doi: 10.1016/s0022-5320(67)80068-6. [DOI] [PubMed] [Google Scholar]
- Levine P. T., Glimcher M. J. The isolation and amino acid composition of the organic matrix and neutral soluble proteins of developing rodent enamel. Arch Oral Biol. 1965 Sep-Oct;10(5):753–756. doi: 10.1016/0003-9969(65)90128-7. [DOI] [PubMed] [Google Scholar]
- Morre J., Merlin L. M., Keenan T. W. Localization of glycosyl transferase activities in a Golgi apparatus-rich fraction isolated from rat liver. Biochem Biophys Res Commun. 1969 Nov 20;37(5):813–819. doi: 10.1016/0006-291x(69)90964-4. [DOI] [PubMed] [Google Scholar]
- Nadler N. J. The interpretation of grain counts in electron microscope radioautography. J Cell Biol. 1971 Jun;49(3):877–882. [PubMed] [Google Scholar]
- Neutra M., Leblond C. P. Radioautographic comparison of the uptake of galactose-H and glucose-H3 in the golgi region of various cells secreting glycoproteins or mucopolysaccharides. J Cell Biol. 1966 Jul;30(1):137–150. doi: 10.1083/jcb.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neutra M., Leblond C. P. Synthesis of the carbohydrate of mucus in the golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J Cell Biol. 1966 Jul;30(1):119–136. doi: 10.1083/jcb.30.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIEZ K. A. Amino acid composition of some calcified proteins. Science. 1961 Sep 22;134(3482):841–842. doi: 10.1126/science.134.3482.841. [DOI] [PubMed] [Google Scholar]
- PINCUS P. Human enamel protein. Br Dent J. 1949 May 6;86(9):226–226. [PubMed] [Google Scholar]
- Pease D. C. Polysaccharides associated with the exterior surface of epithelial cells: kidney, intestine, brain. J Ultrastruct Res. 1966 Aug;15(5):555–588. doi: 10.1016/s0022-5320(66)80128-4. [DOI] [PubMed] [Google Scholar]
- REITH E. J. The ultra structure of ameloblasts from the growing end of rat incisors. Arch Oral Biol. 1960 Oct;2:253–262. doi: 10.1016/0003-9969(60)90067-4. [DOI] [PubMed] [Google Scholar]
- REITH E. J. The ultrastructure of ameloblasts during matrix formation and the maturation of enamel. J Biophys Biochem Cytol. 1961 Apr;9:825–839. doi: 10.1083/jcb.9.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reith E. J., Cotty V. F. The absorptive activity of ameloblasts during the maturation of enamel. Anat Rec. 1967 Apr;157(4):577–587. doi: 10.1002/ar.1091570404. [DOI] [PubMed] [Google Scholar]
- Reith E. J. The stages of amelogenesis as observed in molar teeth of young rats. J Ultrastruct Res. 1970 Jan;30(1):111–151. doi: 10.1016/s0022-5320(70)90068-7. [DOI] [PubMed] [Google Scholar]
- Robineaux R., Anteunis A., Bona C., Astesano A. Localisation par autoradiographie ultrastructurale du galactose 3H dans le lymphocyte transformé. C R Acad Sci Hebd Seances Acad Sci D. 1969 Oct 13;269(15):1434–1436. [PubMed] [Google Scholar]
- SALPETER M. M., BACHMANN L. AUTORADIOGRAPHY WITH THE ELECTRON MICROSCOPE. A PROCEDURE FOR IMPROVING RESOLUTION, SENSITIVITY, AND CONTRAST. J Cell Biol. 1964 Aug;22:469–477. doi: 10.1083/jcb.22.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SARCIONE E. J. THE INITIAL SUBCELLULAR SITE OF INCORPORATION OF HEXOSES INTO LIVER PROTEIN. J Biol Chem. 1964 Jun;239:1686–1689. [PubMed] [Google Scholar]
- SEGAL S., BERNSTEIN H. Observations on cataract formation in the newborn offspring of rats fed a high-galactose diet. J Pediatr. 1963 Mar;62:363–370. doi: 10.1016/s0022-3476(63)80133-x. [DOI] [PubMed] [Google Scholar]
- STACK M. V. Organic constituents of enamel. J Am Dent Assoc. 1954 Mar;48(3):297–306. [PubMed] [Google Scholar]
- Seyer J., Glimcher M. J. The content and nature of the carbohydrate components of the organic matrix of embryonic bovine enamel. Biochim Biophys Acta. 1969 Sep 2;184(3):509–522. doi: 10.1016/0304-4165(69)90265-7. [DOI] [PubMed] [Google Scholar]
- WATSON M. L. The extracellular nature of enamel in the rat. J Biophys Biochem Cytol. 1960 Jun;7:489–492. doi: 10.1083/jcb.7.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshawsky H. A light and electron microscopic study of the nearly mature enamel of rat incisors. Anat Rec. 1971 Mar;169(3):559–583. doi: 10.1002/ar.1091690307. [DOI] [PubMed] [Google Scholar]
- Whur P., Herscovics A., Leblond C. P. Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis. J Cell Biol. 1969 Nov;43(2):289–311. doi: 10.1083/jcb.43.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]