Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Dec;172(12):7256–7259. doi: 10.1128/jb.172.12.7256-7259.1990

Regulation of assimilatory nitrate reductase formation in Klebsiella aerogenes W70.

R A Bender 1, B Friedrich 1
PMCID: PMC210850  PMID: 2254283

Abstract

Klebsiella aerogenes W70 could grow aerobically with nitrate or nitrite as the sole nitrogen source. The assimilatory nitrate reductase and nitrite reductase responsible for this ability required the presence of either nitrate or nitrite as an inducer, and both enzymes were repressed by ammonia. The repression by ammonia, which required the NTR (nitrogen regulatory) system (A. Macaluso, E. A. Best, and R. A. Bender, J. Bacteriol. 172:7249-7255, 1990), did not act solely at the level of inducer exclusion, since strains in which the expression of assimilatory nitrate reductase and nitrite reductase was was independent of the inducer were also susceptible to repression by ammonia. Insertion mutations in two distinct genes, neither of which affected the NTR system, resulted in the loss of both assimilatory nitrate reductase and nitrite reductase. One of these mutants reverted to the wild type, but the other yielded pseudorevertants at high frequency that were independent of inducer but still responded to ammonia repression.

Full text

PDF
7258

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. 't Riet J van, Stouthamer A. H., Planta R. J. Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J Bacteriol. 1968 Nov;96(5):1455–1464. doi: 10.1128/jb.96.5.1455-1464.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldauf S. L., Cardani M. A., Bender R. A. Regulation of the galactose-inducible lac operon and the histidine utilization operons in pts mutants of Klebsiella aerogenes. J Bacteriol. 1988 Dec;170(12):5588–5593. doi: 10.1128/jb.170.12.5588-5593.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cali B. M., Micca J. L., Stewart V. Genetic regulation of nitrate assimilation in Klebsiella pneumoniae M5al. J Bacteriol. 1989 May;171(5):2666–2672. doi: 10.1128/jb.171.5.2666-2672.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goss T. J., Datta P. Molecular cloning and expression of the biodegradative threonine dehydratase gene (tdc) of Escherichia coli K12. Mol Gen Genet. 1985;201(2):308–314. doi: 10.1007/BF00425676. [DOI] [PubMed] [Google Scholar]
  5. Lester R. L., DeMoss J. A. Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli. J Bacteriol. 1971 Mar;105(3):1006–1014. doi: 10.1128/jb.105.3.1006-1014.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Macaluso A., Best E. A., Bender R. A. Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J Bacteriol. 1990 Dec;172(12):7249–7255. doi: 10.1128/jb.172.12.7249-7255.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Magasanik B. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet. 1982;16:135–168. doi: 10.1146/annurev.ge.16.120182.001031. [DOI] [PubMed] [Google Scholar]
  8. Quinto M., Bender R. A. Use of bacteriophage P1 as a vector for Tn5 insertion mutagenesis. Appl Environ Microbiol. 1984 Feb;47(2):436–438. doi: 10.1128/aem.47.2.436-438.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES