Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Mar;170(3):1360–1368. doi: 10.1128/jb.170.3.1360-1368.1988

Genetics of actinomycin C production in Streptomyces chrysomallus.

A Haese 1, U Keller 1
PMCID: PMC210916  PMID: 2449423

Abstract

Three distinct classes of mutations affecting the biosynthesis of actinomycin have been established in Streptomyces chyrsomallus by crossing various actinomycin-nonproducing mutants with each other by protoplast fusion. In crosses between members of different classes of mutations, actinomycin-producing recombinant progeny arose, whereas in crosses between members of the same class, no actinomycin-producing recombinants were seen. Biochemical examination of a number of mutants revealed that the expression of all actinomycin synthetases was reduced by about 1 order of magnitude in mutants belonging to class II. In mutants of class I, the specific activities of the actinomycin synthetases were comparable with those measured in their actinomycin-producing parents. Feeding experiments with 4-methyl-3-hydroxyanthranilic acid (4-MHA), the biosynthetic precursor of the chromophore moiety of actinomycin, with representative mutants of the three genetic classes revealed formation of actinomycin in minute amounts by mutants of class I. It is suggested that mutants belonging to class I are mutated at a genetic locus involved in the biosynthesis of 4-MHA. Mutants belonging to class II appear to carry mutations at a locus involved in the regulation of the expression of the actinomycin synthetases. The role of the locus in class III mutations could not be assigned. Mapping studies in S. chrysomallus based on conjugal matings revealed the chromosomal linkage of all three loci. Mutations belonging to classes I and III were closely linked. Their genetic loci could be localized in a map interval of the chromosomal linkage group which is significantly distant from the gene locus represented by mutations belonging to class II.

Full text

PDF
1362

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. D., Hitchcock M. J., Katz E. Evidence for a constitutive and inducible form of kynurenine formamidase in an actinomycin-producing strain of Streptomyces parvulus. Arch Biochem Biophys. 1980 Jun;202(1):18–22. doi: 10.1016/0003-9861(80)90400-2. [DOI] [PubMed] [Google Scholar]
  2. Brown D., Hitchcock M. J., Katz E. Purification and characterization of kynurenine formamidase activities from Streptomyces parvulus. Can J Microbiol. 1986 Jun;32(6):465–472. doi: 10.1139/m86-086. [DOI] [PubMed] [Google Scholar]
  3. Choy H. A., Jones G. H. Phenoxazinone synthase from Streptomyces antibiotics: purification of the large and small enzyme forms. Arch Biochem Biophys. 1981 Oct 1;211(1):55–65. doi: 10.1016/0003-9861(81)90429-x. [DOI] [PubMed] [Google Scholar]
  4. Delić V., Hopwood D. A., Friend E. J. Mutangenesis by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. Mutat Res. 1970 Feb;9(2):167–182. doi: 10.1016/0027-5107(70)90055-2. [DOI] [PubMed] [Google Scholar]
  5. Harik S. I., Sharma V. K., Wetherbee J. R., Warren R. H., Banerjee S. P. Adrenergic and cholinergic receptors of cerebral microvessels. J Cereb Blood Flow Metab. 1981;1(3):329–338. doi: 10.1038/jcbfm.1981.36. [DOI] [PubMed] [Google Scholar]
  6. Jones G. H., Hopwood D. A. Molecular cloning and expression of the phenoxazinone synthase gene from Streptomyces antibioticus. J Biol Chem. 1984 Nov 25;259(22):14151–14157. [PubMed] [Google Scholar]
  7. KATZ E., PIENTA P., SIVAK A. The role of nutrition in the synthesis of actinomycin. Appl Microbiol. 1958 Jul;6(4):236–241. doi: 10.1128/am.6.4.236-241.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keller U. Actinomycin synthetases. Multifunctional enzymes responsible for the synthesis of the peptide chains of actinomycin. J Biol Chem. 1987 Apr 25;262(12):5852–5856. [PubMed] [Google Scholar]
  9. Keller U. Acyl pentapeptide lactone synthesis in actinomycin-producing streptomycetes by feeding with structural analogs of 4-methyl-3-hydroxyanthranilic acid. J Biol Chem. 1984 Jul 10;259(13):8226–8231. [PubMed] [Google Scholar]
  10. Keller U., Kleinkauf H., Zocher R. 4-Methyl-3-hydroxyanthranilic acid activating enzyme from actinomycin-producing Streptomyces chrysomallus. Biochemistry. 1984 Mar 27;23(7):1479–1484. doi: 10.1021/bi00302a022. [DOI] [PubMed] [Google Scholar]
  11. Keller U., Krengel U., Haese A. Genetic analysis in Streptomyces chrysomallus. J Gen Microbiol. 1985 May;131(5):1181–1191. doi: 10.1099/00221287-131-5-1181. [DOI] [PubMed] [Google Scholar]
  12. Keller U., Pöschmann S., Krengel U., Kleinkauf H., Kraepelin G. Studies of protoplast fusion in Streptomyces chrysomallus. J Gen Microbiol. 1983 Jun;129(6):1725–1731. doi: 10.1099/00221287-129-6-1725. [DOI] [PubMed] [Google Scholar]
  13. Marshall R., Redfield B., Katz E., Weissbach H. Changes in phenoxazinone synthetase activity during the growth cycle of Streptomyces antibioticus. Arch Biochem Biophys. 1968 Feb;123(2):317–323. doi: 10.1016/0003-9861(68)90141-0. [DOI] [PubMed] [Google Scholar]
  14. Ochi K. Control of the actinomycin biosynthetic pathway in and actinomycin resistance of Streptomyces spp. J Bacteriol. 1982 May;150(2):598–603. doi: 10.1128/jb.150.2.598-603.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okanishi M., Suzuki K., Umezawa H. Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol. 1974 Feb;80(2):389–400. doi: 10.1099/00221287-80-2-389. [DOI] [PubMed] [Google Scholar]
  16. Rudd B. A., Hopwood D. A. A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster. J Gen Microbiol. 1980 Aug;119(2):333–340. doi: 10.1099/00221287-119-2-333. [DOI] [PubMed] [Google Scholar]
  17. Rudd B. A., Hopwood D. A. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol. 1979 Sep;114(1):35–43. doi: 10.1099/00221287-114-1-35. [DOI] [PubMed] [Google Scholar]
  18. Townsend M. E., Wright H. M., Hopwood D. A. Efficient mutagenesis by near ultraviolet light in the presence of 8-methoxypsoralen in streptomyces. J Appl Bacteriol. 1971 Dec;34(4):799–801. doi: 10.1111/j.1365-2672.1971.tb01018.x. [DOI] [PubMed] [Google Scholar]
  19. Troost T., Hitchcock M. J., Katz E. Distinct kynureninase and hydroxykynureninase enzymes in an actinomycin-producing strain of Streptomyces parvulus. Biochim Biophys Acta. 1980 Mar 14;612(1):97–106. doi: 10.1016/0005-2744(80)90282-x. [DOI] [PubMed] [Google Scholar]
  20. WEISSBACH H., REDFIELD B., BEAVEN V., KATZ E. 4-METHYL-3-HYDROXYANTHRANILIC ACID, AN INTERMEDIATE IN ACTINOMYCIN BIOSYNTHESIS. Biochem Biophys Res Commun. 1965 May 3;19:524–530. doi: 10.1016/0006-291x(65)90157-9. [DOI] [PubMed] [Google Scholar]
  21. Weber J. M., Wierman C. K., Hutchinson C. R. Genetic analysis of erythromycin production in Streptomyces erythreus. J Bacteriol. 1985 Oct;164(1):425–433. doi: 10.1128/jb.164.1.425-433.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Williams W. K., Katz E. Development of a chemically defined medium for the synthesis of actinomycin D by Streptomyces parvulus. Antimicrob Agents Chemother. 1977 Feb;11(2):281–290. doi: 10.1128/aac.11.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES