Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Mar;170(3):1393–1395. doi: 10.1128/jb.170.3.1393-1395.1988

Methanol production by Mycobacterium smegmatis.

L S Weisman 1, C E Ballou 1
PMCID: PMC210923  PMID: 3343224

Abstract

Mycobacterium smegmatis cells produce [3H]methanol when incubated with [methyl-3H]methionine. The methanol is derived from S-adenosylmethionine rather than methyltetrahydrofolate. M. smegmatis cells carboxymethylate several proteins, and some of the methanol probably results from their demethylation, but most of the methanol may come from an unidentified component with a high gel mobility. Although methanol in the medium reached 19 microM, it was not incorporated into the methylated mannose polysaccharide, a lipid carrier in this organism.

Full text

PDF
1393

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHAPPELL J. B., GREVILLE G. D. Effect of silver ions on mitochondrial adenosine triphosphatase. Nature. 1954 Nov 13;174(4437):930–931. doi: 10.1038/174930b0. [DOI] [PubMed] [Google Scholar]
  2. Clarke S. Protein carboxyl methyltransferases: two distinct classes of enzymes. Annu Rev Biochem. 1985;54:479–506. doi: 10.1146/annurev.bi.54.070185.002403. [DOI] [PubMed] [Google Scholar]
  3. DeFranco A. L., Koshland D. E., Jr Multiple methylation in processing of sensory signals during bacterial chemotaxis. Proc Natl Acad Sci U S A. 1980 May;77(5):2429–2433. doi: 10.1073/pnas.77.5.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dzandu J. K., Johnson R. M. Membrane protein phosphorylation in intact normal and sickle cell erythrocytes. J Biol Chem. 1980 Jul 10;255(13):6382–6386. [PubMed] [Google Scholar]
  5. Gray G. R., Ballou C. E. Methylated polysaccharide activators of fatty acid synthase from Mycobacterium phlei. Methods Enzymol. 1975;35:90–95. doi: 10.1016/0076-6879(75)35142-2. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Maitra S. K., Ballou C. E. Heterogeneity and refined structtures of 3-O-methyl-D-mannose polysaccharides from Mycobacterium smegmatis. J Biol Chem. 1977 Apr 25;252(8):2459–2469. [PubMed] [Google Scholar]
  8. O'Connor C. M., Clarke S. Specific recognition of altered polypeptides by widely distributed methyltransferases. Biochem Biophys Res Commun. 1985 Nov 15;132(3):1144–1150. doi: 10.1016/0006-291x(85)91926-6. [DOI] [PubMed] [Google Scholar]
  9. Prasad R., Kalra V. K., Brodie A. F. Different mechanisms of energy coupling for transport of various amino acids in cells of Mycobacterium phlei. J Biol Chem. 1976 Apr 25;251(8):2493–2498. [PubMed] [Google Scholar]
  10. Stock J. B., Koshland D. E., Jr Changing reactivity of receptor carboxyl groups during bacterial sensing. J Biol Chem. 1981 Nov 10;256(21):10826–10833. [PubMed] [Google Scholar]
  11. Toews M. L., Adler J. Methanol formation in vivo from methylated chemotaxis proteins in Escherichia coli. J Biol Chem. 1979 Mar 25;254(6):1761–1764. [PubMed] [Google Scholar]
  12. Weisman L. S., Ballou C. E. Biosynthesis of the mycobacterial methylmannose polysaccharide. Identification of a 3-O-methyltransferase. J Biol Chem. 1984 Mar 25;259(6):3464–3469. [PubMed] [Google Scholar]
  13. Yamada H., Cohen R. E., Ballou C. E. Characterization of 3-O-methyl-D-mannose polysaccharide precursors in Mycobacterium smegmatis. J Biol Chem. 1979 Mar 25;254(6):1972–1979. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES