Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Apr;170(4):1505–1510. doi: 10.1128/jb.170.4.1505-1510.1988

Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity.

J H Weiner 1, D P MacIsaac 1, R E Bishop 1, P T Bilous 1
PMCID: PMC210994  PMID: 3280546

Abstract

Dimethyl sulfoxide reductase, a terminal electron transfer enzyme, was purified from anaerobically grown Escherichia coli harboring a plasmid which codes for dimethyl sulfoxide reductase. The enzyme was purified to greater than 90% homogeneity from cell envelopes by a three-step purification procedure involving extraction with the detergent Triton X-100, chromatofocusing, and DEAE ion-exchange chromatography. The purified enzyme was composed of three subunits with molecular weights of 82,600, 23,600, and 22,700 as identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight was determined by gel electrophoresis to be 155,000. The purified enzyme contained 7.5 atoms of iron and 0.34 atom of molybdenum per mol of enzyme. The presence of molybdopterin cofactor in dimethyl sulfoxide reductase was identified by reconstitution of cofactor-deficient NADPH nitrate reductase activity from Neurospora crassa nit-I mutant and by UV absorption and fluorescence emission spectra. The enzyme displayed a very broad substrate specificity, reducing various N-oxide and sulfoxide compounds as well as chlorate and hydroxylamine.

Full text

PDF
1506

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amy N. K., Rajagopalan K. V. Characterization of molybdenum cofactor from Escherichia coli. J Bacteriol. 1979 Oct;140(1):114–124. doi: 10.1128/jb.140.1.114-124.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett E. L., Kwan H. S. Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol. 1985;39:131–149. doi: 10.1146/annurev.mi.39.100185.001023. [DOI] [PubMed] [Google Scholar]
  3. Bilous P. T., Weiner J. H. Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101. J Bacteriol. 1985 Jun;162(3):1151–1155. doi: 10.1128/jb.162.3.1151-1155.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bilous P. T., Weiner J. H. Molecular cloning and expression of the Escherichia coli dimethyl sulfoxide reductase operon. J Bacteriol. 1988 Apr;170(4):1511–1518. doi: 10.1128/jb.170.4.1511-1518.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bilous P. T., Weiner J. H. Proton translocation coupled to dimethyl sulfoxide reduction in anaerobically grown Escherichia coli HB101. J Bacteriol. 1985 Jul;163(1):369–375. doi: 10.1128/jb.163.1.369-375.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Bragg P. D., Hackett N. R. Cytochromes of the trimethylamine N-oxide anaerobic respiratory pathway of Escherichia coli. Biochim Biophys Acta. 1983 Oct 31;725(1):168–177. doi: 10.1016/0005-2728(83)90237-2. [DOI] [PubMed] [Google Scholar]
  8. Cole S. T., Condon C., Lemire B. D., Weiner J. H. Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim Biophys Acta. 1985 Dec;811(4):381–403. doi: 10.1016/0304-4173(85)90008-4. [DOI] [PubMed] [Google Scholar]
  9. Dickie P., Weiner J. H. Purification and characterization of membrane-bound fumarate reductase from anaerobically grown Escherichia coli. Can J Biochem. 1979 Jun;57(6):813–821. doi: 10.1139/o79-101. [DOI] [PubMed] [Google Scholar]
  10. FERGUSON K. A. STARCH-GEL ELECTROPHORESIS--APPLICATION TO THE CLASSIFICATION OF PITUITARY PROTEINS AND POLYPEPTIDES. Metabolism. 1964 Oct;13:SUPPL–SUPPL1002. doi: 10.1016/s0026-0495(64)80018-4. [DOI] [PubMed] [Google Scholar]
  11. Furth A. J., Bolton H., Potter J., Priddle J. D. Separating detergent from proteins. Methods Enzymol. 1984;104:318–328. doi: 10.1016/s0076-6879(84)04098-2. [DOI] [PubMed] [Google Scholar]
  12. Garrett R. H., Nason A. Involvement of a B-type cytochrome in the assimilatory nitrate reductase of Neurospora crassa. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1603–1610. doi: 10.1073/pnas.58.4.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hawkes T. R., Bray R. C. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase. Biochem J. 1984 Apr 15;219(2):481–493. doi: 10.1042/bj2190481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ingledew W. J., Poole R. K. The respiratory chains of Escherichia coli. Microbiol Rev. 1984 Sep;48(3):222–271. doi: 10.1128/mr.48.3.222-271.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson J. L., Hainline B. E., Rajagopalan K. V., Arison B. H. The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. J Biol Chem. 1984 May 10;259(9):5414–5422. [PubMed] [Google Scholar]
  16. Johnson J. L., Rajagopalan K. V. Structural and metabolic relationship between the molybdenum cofactor and urothione. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6856–6860. doi: 10.1073/pnas.79.22.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaback H. R. Active transport in Escherichia coli: passage to permease. Annu Rev Biophys Biophys Chem. 1986;15:279–319. doi: 10.1146/annurev.bb.15.060186.001431. [DOI] [PubMed] [Google Scholar]
  18. Kontoghiorghes G. J. 2-Hydroxypyridine-N-oxides: effective new chelators in iron mobilisation. Biochim Biophys Acta. 1987 Apr 16;924(1):13–18. doi: 10.1016/0304-4165(87)90065-1. [DOI] [PubMed] [Google Scholar]
  19. Kwan H. S., Barrett E. L. Purification and properties of trimethylamine oxide reductase from Salmonella typhimurium. J Bacteriol. 1983 Sep;155(3):1455–1458. doi: 10.1128/jb.155.3.1455-1458.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  22. Meganathan R., Schrementi J. Tetrahydrothiophene 1-oxide as an electron acceptor for Escherichia coli. J Bacteriol. 1987 Jun;169(6):2862–2865. doi: 10.1128/jb.169.6.2862-2865.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NASON A., EVANS H. J. Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J Biol Chem. 1953 Jun;202(2):655–673. [PubMed] [Google Scholar]
  24. Nichol C. A., Smith G. K., Duch D. S. Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem. 1985;54:729–764. doi: 10.1146/annurev.bi.54.070185.003501. [DOI] [PubMed] [Google Scholar]
  25. Pascal M. C., Burini J. F., Chippaux M. Regulation of the trimethylamine N-oxide (TMAO) reductase in Escherichia coli: analysis of tor::Mud1 operon fusion. Mol Gen Genet. 1984;195(1-2):351–355. doi: 10.1007/BF00332770. [DOI] [PubMed] [Google Scholar]
  26. Sagai M., Ishimoto M. An enzyme reducing adenosine 1N-oxide in Escherichia coli, amine N-oxide reductase. J Biochem. 1973 Apr;73(4):843–859. doi: 10.1093/oxfordjournals.jbchem.a130147. [DOI] [PubMed] [Google Scholar]
  27. Seki S., Hattori Y., Hasegawa T., Haraguchi H., Ishimoto M. Studies on nitrate reductase of Clostridium perfringens. IV. Identification of metals, molybdenum cofactor, and iron-sulfur cluster. J Biochem. 1987 Feb;101(2):503–509. doi: 10.1093/oxfordjournals.jbchem.a121937. [DOI] [PubMed] [Google Scholar]
  28. Shimokawa O., Ishimoto M. Purification and some properties of inducible tertiary amine N-oxide reductase from Escherichia coli. J Biochem. 1979 Dec;86(6):1709–1717. doi: 10.1093/oxfordjournals.jbchem.a132691. [DOI] [PubMed] [Google Scholar]
  29. Spencer M. E., Guest J. R. Isolation and properties of fumarate reductase mutants of Escherichia coli. J Bacteriol. 1973 May;114(2):563–570. doi: 10.1128/jb.114.2.563-570.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Styrvold O. B., Strøm A. R. Dimethylsulphoxide and trimethylamine oxide respiration of Proteus vulgaris. Evidence for a common terminal reductase system. Arch Microbiol. 1984 Nov;140(1):74–78. doi: 10.1007/BF00409774. [DOI] [PubMed] [Google Scholar]
  31. Umbreit J. N., Strominger J. L. Relation of detergent HLB number to solubilization and stabilization of D-alanine carboxypeptidase from Bacillus subtilis membranes. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2997–3001. doi: 10.1073/pnas.70.10.2997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamamoto I., Okubo N., Ishimoto M. Further characterization of trimethylamine N-oxide reductase from Escherichia coli, a molybdoprotein. J Biochem. 1986 Jun;99(6):1773–1779. doi: 10.1093/oxfordjournals.jbchem.a135655. [DOI] [PubMed] [Google Scholar]
  33. del Campillo-Campbell A., Campbell A. Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli. J Bacteriol. 1982 Feb;149(2):469–478. doi: 10.1128/jb.149.2.469-478.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES