Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 May;170(5):2078–2082. doi: 10.1128/jb.170.5.2078-2082.1988

New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium.

B Frey 1, J McCloskey 1, W Kersten 1, H Kersten 1
PMCID: PMC211089  PMID: 3129401

Abstract

Queuosine (Q), 7-[(4,5-cis-dihydroxy-2-cyclopentene-1-yl)-amino)methyl)-7- deazaguanosine, and Q derivatives usually replace guanosine in the anticodon of tRNAs(GUN) of eubacteria and of cytoplasmic and mitochondrial tRNAs of lower and higher eucaryotes except yeasts. Q appears to be synthesized de novo exclusively in eubacteria, and the free-base queuine serves as a nutrient factor for eucaryotes. Recently, a Q derivative, oQ, containing a 2,3-epoxy-4,5-dihydroxycyclopentane ring, has been identified in Escherichia coli tRNA(Tyr). Here we show that oQ is formed when E. coli or Salmonella typhimurium is grown in glucose-salt medium. The formation of oQ was independent of molecular oxygen, and oQ-tRNAs were converted to Q-tRNAs by adding cobalamin to the growth medium. Under strictly anaerobic conditions, considerable amounts of Q were present in E. coli and S. typhimurium tRNAs when the bacteria were grown in the presence of cobalt ions with glycerol as the carbon source and fumarate as the electron acceptor. Under these conditions, the biosynthesis of cobalamin was induced. The results suggest that oQ is derived from ribose and that oQ is finally reduced to Q by a cobamide-dependent enzyme.

Full text

PDF
2081

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arps P. J., Winkler M. E. An unusual genetic link between vitamin B6 biosynthesis and tRNA pseudouridine modification in Escherichia coli K-12. J Bacteriol. 1987 Mar;169(3):1071–1079. doi: 10.1128/jb.169.3.1071-1079.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashley G. W., Harris G., Stubbe J. The mechanism of Lactobacillus leichmannii ribonucleotide reductase. Evidence for 3' carbon-hydrogen bond cleavage and a unique role for coenzyme B12. J Biol Chem. 1986 Mar 25;261(9):3958–3964. [PubMed] [Google Scholar]
  3. Björk G. R. A novel link between the biosynthesis of aromatic amino acids and transfer RNA modification in Escherichia coli. J Mol Biol. 1980 Jul 5;140(3):391–410. doi: 10.1016/0022-2836(80)90391-5. [DOI] [PubMed] [Google Scholar]
  4. Buck M., Ames B. N. A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosylzeatin in the tRNA of Salmonella. Cell. 1984 Feb;36(2):523–531. doi: 10.1016/0092-8674(84)90245-9. [DOI] [PubMed] [Google Scholar]
  5. Buck M., Connick M., Ames B. N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem. 1983 Feb 15;129(1):1–13. doi: 10.1016/0003-2697(83)90044-1. [DOI] [PubMed] [Google Scholar]
  6. Buck M., Griffiths E. Iron mediated methylthiolation of tRNA as a regulator of operon expression in Escherichia coli. Nucleic Acids Res. 1982 Apr 24;10(8):2609–2624. doi: 10.1093/nar/10.8.2609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cauthen S. E., Foster M. A., Woods D. D. Methionine synthesis by extracts of Salmonella typhimurium. Biochem J. 1966 Feb;98(2):630–635. doi: 10.1042/bj0980630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang G. W., Chang J. T. Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature. 1975 Mar 13;254(5496):150–151. doi: 10.1038/254150a0. [DOI] [PubMed] [Google Scholar]
  10. Escalante-Semerena J. C., Roth J. R. Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol. 1987 May;169(5):2251–2258. doi: 10.1128/jb.169.5.2251-2258.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FRAENKEL D. G., NEIDHARDT F. C. Use of chloramphenicol to study control of RNA synthesis in bacteria. Biochim Biophys Acta. 1961 Oct 14;53:96–110. doi: 10.1016/0006-3002(61)90797-1. [DOI] [PubMed] [Google Scholar]
  12. Gehrke C. W., Kuo K. C., McCune R. A., Gerhardt K. O., Agris P. F. Quantitative enzymatic hydrolysis of tRNAs: reversed-phase high-performance liquid chromatography of tRNA nucleosides. J Chromatogr. 1982 Jul 9;230(2):297–308. [PubMed] [Google Scholar]
  13. Halpern J. Mechanisms of coenzyme B12-dependent rearrangements. Science. 1985 Feb 22;227(4689):869–875. doi: 10.1126/science.2857503. [DOI] [PubMed] [Google Scholar]
  14. Jeter R. M., Roth J. R. Cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol. 1987 Jul;169(7):3189–3198. doi: 10.1128/jb.169.7.3189-3198.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katze J. R., Farkas W. R. A factor in serum and amniotic fluid is a substrate for the tRNA-modifying enzyme tRNA-guanine transferase. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3271–3275. doi: 10.1073/pnas.76.7.3271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katze J. R., Simonian M. H., Mosteller R. D. Role of methionine in the synthesis of nucleoside Q in Escherichia coli transfer ribonucleic acid. J Bacteriol. 1977 Oct;132(1):174–179. doi: 10.1128/jb.132.1.174-179.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kersten H. On the biological significance of modified nucleosides in tRNA. Prog Nucleic Acid Res Mol Biol. 1984;31:59–114. doi: 10.1016/s0079-6603(08)60375-x. [DOI] [PubMed] [Google Scholar]
  18. Kuchino Y., Kasai H., Nihei K., Nishimura S. Biosynthesis of the modified nucleoside Q in transfer RNA. Nucleic Acids Res. 1976 Feb;3(2):393–398. doi: 10.1093/nar/3.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nishimura S. Structure, biosynthesis, and function of queuosine in transfer RNA. Prog Nucleic Acid Res Mol Biol. 1983;28:49–73. doi: 10.1016/s0079-6603(08)60082-3. [DOI] [PubMed] [Google Scholar]
  20. Noguchi S., Nishimura Y., Hirota Y., Nishimura S. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA. J Biol Chem. 1982 Jun 10;257(11):6544–6550. [PubMed] [Google Scholar]
  21. Okada N., Nishimura S. Isolation and characterization of a guanine insertion enzyme, a specific tRNA transglycosylase, from Escherichia coli. J Biol Chem. 1979 Apr 25;254(8):3061–3066. [PubMed] [Google Scholar]
  22. Okada N., Yasuda T., Nishimura S. Detection of nucleoside Q precursor in methyl-deficient E.coli tRNA. Nucleic Acids Res. 1977 Dec;4(12):4063–4075. doi: 10.1093/nar/4.12.4063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palatnik C. M., Katz E. R. Isolation and characterization of transfer RNAs from Dictyostelium discoideum during growth and development. J Biol Chem. 1977 Jan 25;252(2):694–703. [PubMed] [Google Scholar]
  24. Petersen H. U., Joseph E., Ullmann A., Danchin A. Formylation of initiator tRNA methionine in procaryotic protein synthesis: in vivo polarity in lactose operon expression. J Bacteriol. 1978 Aug;135(2):453–459. doi: 10.1128/jb.135.2.453-459.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Phillipson D. W., Edmonds C. G., Crain P. F., Smith D. L., Davis D. R., McCloskey J. A. Isolation and structure elucidation of an epoxide derivative of the hypermodified nucleoside queuosine from Escherichia coli transfer RNA. J Biol Chem. 1987 Mar 15;262(8):3462–3471. [PubMed] [Google Scholar]
  26. Sennett C., Rosenberg L. E., Mellman I. S. Transmembrane transport of cobalamin in prokaryotic and eukaryotic cells. Annu Rev Biochem. 1981;50:1053–1086. doi: 10.1146/annurev.bi.50.070181.005201. [DOI] [PubMed] [Google Scholar]
  27. Singhal R. P., Kopper R. A., Nishimura S., Shindo-Okada N. Modification of guanine to queuine in transfer RNAs during development and aging. Biochem Biophys Res Commun. 1981 Mar 16;99(1):120–126. doi: 10.1016/0006-291x(81)91721-6. [DOI] [PubMed] [Google Scholar]
  28. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES