Abstract
Treatment of metaphase HTC cells with ZnCl2 inhibits histone phosphatase activity and leads to an increase in the hyperphosphorylated forms of the lysine-rich (F1) histone. Under normal conditions a massive phosphatase activity is triggered as the cells shift from M into G1 phase. In the presence of ZnCl2 this activity is abolished and thehyperphosphorylated form of F1 persists intact into G1. We have asked the simple question of whether the chromosome can still extend during the M-G1 transition even if the F1 histone is maintained in the hyperphosphorylated form. We observe an apparently normal extension os the chromosomal material under these conditions, though it is evident that high levels of ZnCl2 have rather substantial effects on other cell functions.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balhorn R., Balhorn M., Morris H. P., Chalkley R. Comparative high-resolution electrophoresis of tumor histones: variation in phosphorylation as a function of cell replication rate. Cancer Res. 1972 Aug;32(8):1775–1784. [PubMed] [Google Scholar]
- Balhorn R., Bordwell J., Sellers L., Granner D., Chalkley R. Histone phosphorylation and DNA synthesis are linked in synchronous cultures of HTC cells. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1326–1333. doi: 10.1016/s0006-291x(72)80120-7. [DOI] [PubMed] [Google Scholar]
- Balhorn R., Jackson V., Granner D., Chalkey R. Phosphorylation of the lysine-rich histones throughout the cell cycle. Biochemistry. 1975 Jun 3;14(11):2504–2511. doi: 10.1021/bi00682a033. [DOI] [PubMed] [Google Scholar]
- Balhorn R., Tanphaichitr N., Chalkley R., Granner D. K. The effect of inhibition of deoxyribonucleic acid synthesis on histone phosphorylation. Biochemistry. 1973 Dec 4;12(25):5146–5150. doi: 10.1021/bi00749a019. [DOI] [PubMed] [Google Scholar]
- Bradbury E. M., Inglis R. J., Matthews H. R. Control of cell division by very lysine rich histone (F1) phosphorylation. Nature. 1974 Feb 1;247(5439):257–261. doi: 10.1038/247257a0. [DOI] [PubMed] [Google Scholar]
- Bradbury E. M., Inglis R. J., Matthews H. R., Sarner N. Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensation. Eur J Biochem. 1973 Feb 15;33(1):131–139. doi: 10.1111/j.1432-1033.1973.tb02664.x. [DOI] [PubMed] [Google Scholar]
- Gorovsky M. A., Keevert J. B. Absence of histone F1 in a mitotically dividing, genetically inactive nucleus. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2672–2676. doi: 10.1073/pnas.72.7.2672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorovsky M. A., Keevert J. B., Pleger G. L. Histone F1 of Tetrahymena macronuclei: unique electrophoretic properties and phosphorylation of F1 in an amitotic nucleus. J Cell Biol. 1974 Apr;61(1):134–145. doi: 10.1083/jcb.61.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurley L. R., Walters R. A., Tobey R. A. Cell cycle-specific changes in histone phosphorylation associated with cell proliferation and chromosome condensation. J Cell Biol. 1974 Feb;60(2):356–364. doi: 10.1083/jcb.60.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lake R. S. F1-histone phosphorylation in metaphase chromosomes of cultured Chinese hamster cells. Nat New Biol. 1973 Apr 4;242(118):145–146. doi: 10.1038/newbio242145a0. [DOI] [PubMed] [Google Scholar]
- Lake R. S. Further characterization of the F1-histone phosphokinase of metaphase-arrested animal cells. J Cell Biol. 1973 Aug;58(2):317–331. doi: 10.1083/jcb.58.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lake R. S., Goidl J. A., Salzman N. P. F1-histone modification at metaphase in Chinese hamster cells. Exp Cell Res. 1972 Jul;73(1):113–121. doi: 10.1016/0014-4827(72)90108-5. [DOI] [PubMed] [Google Scholar]
- Lake R. S., Salzman N. P. Occurrence and properties of a chromatin-associated F1-histone phosphokinase in mitotic Chinese hamster cells. Biochemistry. 1972 Dec 5;11(25):4817–4826. doi: 10.1021/bi00775a027. [DOI] [PubMed] [Google Scholar]
- Louie A. J., Dixon G. H. Kinetics of phosphorylation and dephosphorylation of testis histones and their possible role in determining chromosomal structure. Nat New Biol. 1973 Jun 6;243(127):164–168. doi: 10.1038/newbio243164a0. [DOI] [PubMed] [Google Scholar]
- Marks D. B., Paik W. K., Borun T. W. The relationship of histone phosphorylation to deoxyribonucleci acid replication and mitosis during the HeLa S-3 cell cycle. J Biol Chem. 1973 Aug 25;248(16):5660–5667. [PubMed] [Google Scholar]
- Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]