Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 May;170(5):2388–2391. doi: 10.1128/jb.170.5.2388-2391.1988

Cytochrome c2-independent respiratory growth of Rhodobacter capsulatus.

F Daldal 1
PMCID: PMC211136  PMID: 2834343

Abstract

To assess the role of cytochrome c2 as a respiratory electron carrier, we obtained a double mutant of Rhodobacter capsulatus defective in cytochrome c2 and in the quinol oxidase260. This mutant was able to grow chemoheterotrophically, indicating that an electron pathway independent of cytochrome c2 was functional between the ubiquinol:cytochrome c2 oxidoreductase and the cytochrome oxidase410.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baccarini-Melandri A., Jones O. T., Hauska G. Cytochrome c2--an electron carrier shared by the respiratory and photosynthetic electron transport chain of Rhodopseudomonas capsulata. FEBS Lett. 1978 Feb 15;86(2):151–154. doi: 10.1016/0014-5793(78)80551-1. [DOI] [PubMed] [Google Scholar]
  2. Berry E. A., Trumpower B. L. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes. J Biol Chem. 1985 Feb 25;260(4):2458–2467. [PubMed] [Google Scholar]
  3. Daldal F., Cheng S., Applebaum J., Davidson E., Prince R. C. Cytochrome c(2) is not essential for photosynthetic growth of Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2012–2016. doi: 10.1073/pnas.83.7.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daldal F., Davidson E., Cheng S. Isolation of the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c1 all components of the ubiquinol: cytochrome c2 oxidoreductase complex of Rhodopseudomonas capsulata. J Mol Biol. 1987 May 5;195(1):1–12. doi: 10.1016/0022-2836(87)90322-6. [DOI] [PubMed] [Google Scholar]
  5. Hüdig H., Drews G. Characterization of a new membrane-bound cytochrome c of Rhodopseudomonas capsulata. FEBS Lett. 1983 Feb 21;152(2):251–255. doi: 10.1016/0014-5793(83)80390-1. [DOI] [PubMed] [Google Scholar]
  6. Hüdig H., Drews G. Kinetic studies on formation of cytochrome oxidase of Rhodopseudomonas capsulata after a shift from phototrophic to chemotrophic growth. J Bacteriol. 1985 Jun;162(3):897–901. doi: 10.1128/jb.162.3.897-901.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuo L. M., Davies H. C., Smith L. Monoclonal antibodies to cytochrome c from Paracoccus denitrificans: effects on electron transport reactions. Biochim Biophys Acta. 1985 Oct 9;809(3):388–395. doi: 10.1016/0005-2728(85)90189-6. [DOI] [PubMed] [Google Scholar]
  8. La Monica R. F., Marrs B. L. The branched respiratory system of photosynthetically grown Rhodopseudomonas capsulata. Biochim Biophys Acta. 1976 Mar 12;423(3):431–439. doi: 10.1016/0005-2728(76)90198-5. [DOI] [PubMed] [Google Scholar]
  9. Marrs B., Gest H. Genetic mutations affecting the respiratory electron-transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol. 1973 Jun;114(3):1045–1051. doi: 10.1128/jb.114.3.1045-1051.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marrs B. Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol. 1981 Jun;146(3):1003–1012. doi: 10.1128/jb.146.3.1003-1012.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prince R. C., Daldal F. Physiological electron donors to the photochemical reaction center of Rhodobacter capsulatus. Biochim Biophys Acta. 1987 Dec 17;894(3):370–378. doi: 10.1016/0005-2728(87)90115-0. [DOI] [PubMed] [Google Scholar]
  12. Scolnik P. A., Haselkorn R. Activation of extra copies of genes coding for nitrogenase in Rhodopseudomonas capsulata. Nature. 1984 Jan 19;307(5948):289–292. doi: 10.1038/307289a0. [DOI] [PubMed] [Google Scholar]
  13. Sone N., Sekimachi M., Kutoh E. Identification and properties of a quinol oxidase super-complex composed of a bc1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J Biol Chem. 1987 Nov 15;262(32):15386–15391. [PubMed] [Google Scholar]
  14. Taylor D. P., Cohen S. N., Clark W. G., Marrs B. L. Alignment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol. 1983 May;154(2):580–590. doi: 10.1128/jb.154.2.580-590.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weaver P. F., Wall J. D., Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol. 1975 Nov 7;105(3):207–216. doi: 10.1007/BF00447139. [DOI] [PubMed] [Google Scholar]
  16. Yen H. C., Hu N. T., Marrs B. L. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. J Mol Biol. 1979 Jun 25;131(2):157–168. doi: 10.1016/0022-2836(79)90071-8. [DOI] [PubMed] [Google Scholar]
  17. Zannoni D., Melandri B. A., Baccarini-Melandri A. Energy tranduction in photosynthetic bacteria. XI. Further resolution of cytochromes of b type and the nature of the co-sensitive oxidase present in the respiratory chain of Rhodopseudomonas capsulata. Biochim Biophys Acta. 1976 Dec 6;449(3):386–400. doi: 10.1016/0005-2728(76)90150-x. [DOI] [PubMed] [Google Scholar]
  18. Zannoni D., Melandri B. A., Baccarini-Melandri A. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata. Biochim Biophys Acta. 1976 Mar 12;423(3):413–430. doi: 10.1016/0005-2728(76)90197-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES