Abstract
Muscle fibers of the tarantula femur exhibit structural and biochemical characteristics similar to those of other long-sarcomere invertebrate muscles, having long A-bands and long thick filaments. 9-12 thin filaments surround each thick filament. Tarantula muscle has a paramyosin:myosin heavy chain molecular ratio of 0.31 +/- 0.079 SD. We studied the myosin cross-bridge arrangement on the surface of tarantula thick filaments on isolated, negatively stained, and unidirectionally metal-shadowed specimens by electron microscopy and optical diffraction and filtering and found it to be similar to that previously described for the thick filaments of muscle of the closely related chelicerate arthropod, Limulus. Cross-bridges are disposed in a four-stranded right- handed helical arrangement, with 14.5-nm axial spacing between successive levels of four bridges, and a helical repeat period every 43.5 nm. The orientation of cross-bridges on the surface of tarantula filaments is also likely to be very similar to that on Limulus filaments as suggested by the similarity between filtered images of the two types of filaments and the radial distance of the centers of mass of the cross-bridges from the surfaces of both types of filaments. Tarantula filaments, however, have smaller diameters than Limulus filaments, contain less paramyosin, and display structure that probably reflects the organization of the filament backbone which is not as apparent in images of Limulus filaments. We suggest that the similarities between Limulus and tarantula thick filaments may be governed, in part, by the close evolutionary relationship of the two species.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bullard B., Luke B., Winkelman L. The paramyosin of insect flight muscle. J Mol Biol. 1973 Apr 5;75(2):359–367. doi: 10.1016/0022-2836(73)90026-0. [DOI] [PubMed] [Google Scholar]
- Cohen C. Matching molecules in the catch mechanism. Proc Natl Acad Sci U S A. 1982 May;79(10):3176–3178. doi: 10.1073/pnas.79.10.3176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dewey M. M., Colflesh D., Brink P., Fan S., Gaylinn B., Gural N. Structural, functional, and chemical changes in the contractile apparatus of Limulus striated muscle as a function of sarcomere shortening and tension development. Soc Gen Physiol Ser. 1982;37:53–72. [PubMed] [Google Scholar]
- Dewey M. M., Levine R. J., Colflesh D. E. Structure of Limulus striated muscle. The contractile apparatus at various sarcomere lengths. J Cell Biol. 1973 Sep;58(3):574–593. doi: 10.1083/jcb.58.3.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dewey M. M., Walcott B., Colflesh D. E., Terry H., Levine R. J. Changes in thick filament length in Limulus striated muscle. J Cell Biol. 1977 Nov;75(2 Pt 1):366–380. doi: 10.1083/jcb.75.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elfvin M., Levine R. J., Dewey M. M. Paramyosin in invertebrate muscles. I. Identification and localization. J Cell Biol. 1976 Oct;71(1):261–272. doi: 10.1083/jcb.71.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein H. F., Aronow B. J., Harris H. E. Myosin-paramyosin cofilaments: enzymatic interactions with F-actin. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3015–3019. doi: 10.1073/pnas.73.9.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson H. P., Voter W. A., Leonard K. Image reconstruction in electron microscopy: enhancement of periodic structure by optical filtering. Methods Enzymol. 1978;49:39–63. doi: 10.1016/s0076-6879(78)49006-8. [DOI] [PubMed] [Google Scholar]
- Gregory D. W., Pirie B. J. Wetting agents for biological electron microscopy. I. General considerations and negative staining. J Microsc. 1973 Dec;99(3):251–255. doi: 10.1111/j.1365-2818.1973.tb04625.x. [DOI] [PubMed] [Google Scholar]
- Haselgrove J. C. A model of myosin crossbridge structure consistent with the low-angle x-ray diffraction pattern of vertebrate muscle. J Muscle Res Cell Motil. 1980 Jun;1(2):177–191. doi: 10.1007/BF00711798. [DOI] [PubMed] [Google Scholar]
- Kensler R. W., Levine R. J. An electron microscopic and optical diffraction analysis of the structure of Limulus telson muscle thick filaments. J Cell Biol. 1982 Feb;92(2):443–451. doi: 10.1083/jcb.92.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kensler R. W., Levine R. J. Determination of the handedness of the crossbridge helix of Limulus thick filaments. J Muscle Res Cell Motil. 1982 Sep;3(3):349–361. doi: 10.1007/BF00713042. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levine R. J., Dewey M. M., De Villafranca G. W. Immunohistochemical localization of contractile proteins in limulus striated muscle. J Cell Biol. 1972 Oct;55(1):221–235. doi: 10.1083/jcb.55.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine R. J., Dewey M. M., Elfvin M., Walcott B. Lethocerus flight muscle paramyosin: antibody localization and electrophoretic studies. Am J Anat. 1974 Nov;141(3):453–458. doi: 10.1002/aja.1001410315. [DOI] [PubMed] [Google Scholar]
- Levine R. J., Elfvin M., Dewey M. M., Walcott B. Paramyosin in invertebrate muscles. II. Content in relation to structure and function. J Cell Biol. 1976 Oct;71(1):273–279. doi: 10.1083/jcb.71.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine R. J., Kensler R. W., Stewart M., Haselgrove J. C. Molecular organization of Limulus thick filaments. Soc Gen Physiol Ser. 1982;37:37–52. [PubMed] [Google Scholar]
- Leyton R. A., Ullrick W. G. Z disc ultrastructure in scutal depressor fibers of the barnacle. Science. 1970 Apr 3;168(3927):127–128. doi: 10.1126/science.168.3927.127. [DOI] [PubMed] [Google Scholar]
- Mackenzie J. M., Jr, Epstein H. F. Paramyosin is necessary for determination of nematode thick filament length in vivo. Cell. 1980 Dec;22(3):747–755. doi: 10.1016/0092-8674(80)90551-6. [DOI] [PubMed] [Google Scholar]
- Reedy M. K., Leonard K. R., Freeman R., Arad T. Thick myofilament mass determination by electron scattering measurements with the scanning transmission electron microscope. J Muscle Res Cell Motil. 1981 Mar;2(1):45–64. doi: 10.1007/BF00712061. [DOI] [PubMed] [Google Scholar]
- Reedy M. K. Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice. J Mol Biol. 1968 Jan 28;31(2):155–176. doi: 10.1016/0022-2836(68)90437-3. [DOI] [PubMed] [Google Scholar]
- Stewart M., Kensler R. W., Levine R. J. Structure of Limulus telson muscle thick filaments. J Mol Biol. 1981 Dec 15;153(3):781–790. doi: 10.1016/0022-2836(81)90418-6. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Wray J. S. Organization of myosin in invertebrate thick filaments. Soc Gen Physiol Ser. 1982;37:29–36. [PubMed] [Google Scholar]
- Wray J. S. Structure of the backbone in myosin filaments of muscle. Nature. 1979 Jan 4;277(5691):37–40. doi: 10.1038/277037a0. [DOI] [PubMed] [Google Scholar]
- Wray J. S., Vibert P. J., Cohen C. Cross-bridge arrangements in Limulus muscle. J Mol Biol. 1974 Sep 15;88(2):343–348. doi: 10.1016/0022-2836(74)90486-0. [DOI] [PubMed] [Google Scholar]
- Wray J. S., Vibert P. J., Cohen C. Diversity of cross-bridge configurations in invertebrate muscles. Nature. 1975 Oct 16;257(5527):561–564. doi: 10.1038/257561a0. [DOI] [PubMed] [Google Scholar]
- Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]
- Zebe E., Rathmayer W. Elektronenmikroskopische Untersuchungen an Spinnenmuskeln. Z Zellforsch Mikrosk Anat. 1968;92(3):377–387. [PubMed] [Google Scholar]