Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Oct 1;99(4):1372–1378. doi: 10.1083/jcb.99.4.1372

Identification of two intermediates during processing of profilaggrin to filaggrin in neonatal mouse epidermis

PMCID: PMC2113300  PMID: 6480697

Abstract

A major event in the keratinization of epidermis is the production of the histidine-rich protein filaggrin (26,000 mol wt) from its high molecular weight (greater than 350,000) phosphorylated precursor (profilaggrin). We have identified two nonphosphorylated intermediates (60,000 and 90,000 mol wt) in NaSCN extracts of epidermis from C57/Bl6 mice by in vivo pulse-chase studies. Results of peptide mapping using a two-dimensional technique suggest that these intermediates consist of either two or three copies of filaggrin domains. Each of the intermediates has been purified. The ratios of amino acids in the purified components are unusual and essentially identical. The data are discussed in terms of a precursor containing tandem repeats of similar domains. In vivo pulse-chase experiments demonstrate that the processing of the high molecular weight phosphorylated precursor involves dephosphorylation and proteolytic steps through three-domain and two-domain intermediates to filaggrin. These processing steps appear to occur as the cell goes through the transition cell stage to form a cornified cell.

Full Text

The Full Text of this article is available as a PDF (900.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball R. D., Walker G. K., Bernstein I. A. Histidine-rich proteins as molecular markers of epidermal differentiation. J Biol Chem. 1978 Aug 25;253(16):5861–5868. [PubMed] [Google Scholar]
  2. Balmain A. The synthesis of specific proteins in adult mouse epidermis during phases of proliferation and differentiation induced by the tumor promoter TPA, and in basal and differentiating layers of neonatal mouse epidermis. J Invest Dermatol. 1976 Aug;67(2):246–253. doi: 10.1111/1523-1747.ep12513451. [DOI] [PubMed] [Google Scholar]
  3. Bordier C., Crettol-Järvinen A. Peptide mapping of heterogeneous protein samples. J Biol Chem. 1979 Apr 25;254(8):2565–2567. [PubMed] [Google Scholar]
  4. Brewer J. M., Ashworth R. B. Disc electrophoresis. J Chem Educ. 1969 Jan;46(1):41–45. doi: 10.1021/ed046p41. [DOI] [PubMed] [Google Scholar]
  5. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  6. Dale B. A., Holbrook K. A., Steinert P. M. Assembly of stratum corneum basic protein and keratin filaments in macrofibrils. Nature. 1978 Dec 14;276(5689):729–731. doi: 10.1038/276729a0. [DOI] [PubMed] [Google Scholar]
  7. Dale B. A., Ling S. Y. Immunologic cross-reaction of stratum corneum basic protein and a keratohyalin granule protein. J Invest Dermatol. 1979 May;72(5):257–261. doi: 10.1111/1523-1747.ep12531715. [DOI] [PubMed] [Google Scholar]
  8. Dale B. A. Purification and characterization of a basic protein from the stratum corneum of mammalian epidermis. Biochim Biophys Acta. 1977 Mar 28;491(1):193–204. doi: 10.1016/0005-2795(77)90055-1. [DOI] [PubMed] [Google Scholar]
  9. Fukuyama K., Epstein W. L. A comparative autoradiographic study of keratogyalin granules containing cystine and histidine. J Ultrastruct Res. 1975 Jun;51(3):314–325. doi: 10.1016/s0022-5320(75)80096-7. [DOI] [PubMed] [Google Scholar]
  10. Fukuyama K., Nakamura T., Benstein I. A. Differentially localized incorporation of amino acids in relation to epidermal keratinization in the newborn rat. Anat Rec. 1965 Aug;152(4):525–535. doi: 10.1002/ar.1091520412. [DOI] [PubMed] [Google Scholar]
  11. Harding C. R., Scott I. R. Histidine-rich proteins (filaggrins): structural and functional heterogeneity during epidermal differentiation. J Mol Biol. 1983 Nov 5;170(3):651–673. doi: 10.1016/s0022-2836(83)80126-0. [DOI] [PubMed] [Google Scholar]
  12. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  13. Itaya K., Ui M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta. 1966 Sep;14(3):361–366. doi: 10.1016/0009-8981(66)90114-8. [DOI] [PubMed] [Google Scholar]
  14. Jessen H., Peters P. D., Hall T. A. Sulphure in epidermal keratohyalin granules: a quantitative assay by x-ray microanalysis. J Cell Sci. 1976 Oct;22(1):161–171. doi: 10.1242/jcs.22.1.161. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lonsdale-Eccles J. D., Haugen J. A., Dale B. A. A phosphorylated keratohyalin-derived precursor of epidermal stratum corneum basic protein. J Biol Chem. 1980 Mar 25;255(6):2235–2238. [PubMed] [Google Scholar]
  17. Lonsdale-Eccles J. D., Lynley A. M., Dale B. A. Cyanogen bromide cleavage of proteins in sodium dodecyl sulphate/polyacrylamide gels. Diagonal peptide mapping of proteins from epidermis. Biochem J. 1981 Sep 1;197(3):591–597. doi: 10.1042/bj1970591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lonsdale-Eccles J. D., Resing K. A., Meek R. L., Dale B. A. High-molecular-weight precursor of epidermal filaggrin and hypothesis for its tandem repeating structure. Biochemistry. 1984 Mar 13;23(6):1239–1245. doi: 10.1021/bi00301a034. [DOI] [PubMed] [Google Scholar]
  19. Lonsdale-Eccles J. D., Teller D. C., Dale B. A. Characterization of a phosphorylated form of the intermediate filament-aggregating protein filaggrin. Biochemistry. 1982 Nov 9;21(23):5940–5948. doi: 10.1021/bi00266a033. [DOI] [PubMed] [Google Scholar]
  20. Meek R. L., Lonsdale-Eccles J. D., Dale B. A. Epidermal filaggrin is synthesized on a large messenger ribonucleic acid as a high-molecular-weight precursor. Biochemistry. 1983 Oct 11;22(21):4867–4871. doi: 10.1021/bi00290a001. [DOI] [PubMed] [Google Scholar]
  21. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  22. Ogawa H., Taneda A., Kanaoka Y., Sekine T. The histochemical distribution of protein bound sulfhydryl groups in human epidermis by the new staining method. J Histochem Cytochem. 1979 May;27(5):942–946. doi: 10.1177/27.5.90070. [DOI] [PubMed] [Google Scholar]
  23. Ramsden M., Loehren D., Balmain A. Identification of a rapidly labelled 350K histidine-rich protein in neonatal mouse epidermis. Differentiation. 1983;23(3):243–249. doi: 10.1111/j.1432-0436.1982.tb01289.x. [DOI] [PubMed] [Google Scholar]
  24. Scott I. R., Harding C. R., Barrett J. G. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta. 1982 Oct 28;719(1):110–117. doi: 10.1016/0304-4165(82)90314-2. [DOI] [PubMed] [Google Scholar]
  25. Scott I. R., Harding C. R. Studies on the synthesis and degradation of a high molecular weight, histidine-rich phosphoprotein from mammalian epidermis. Biochim Biophys Acta. 1981 Jun 29;669(1):65–78. doi: 10.1016/0005-2795(81)90224-5. [DOI] [PubMed] [Google Scholar]
  26. Spiro M. J. Subunit heterogeneity of thyroglobulin. J Biol Chem. 1973 Jun 25;248(12):4446–4460. [PubMed] [Google Scholar]
  27. Steinert P. M., Cantieri J. S., Teller D. C., Lonsdale-Eccles J. D., Dale B. A. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4097–4101. doi: 10.1073/pnas.78.7.4097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tijssen P., Kurstak E. An efficient two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis method for simultaneous peptide mapping of protein contained in a mixture. Anal Biochem. 1983 Jan;128(1):26–35. doi: 10.1016/0003-2697(83)90339-1. [DOI] [PubMed] [Google Scholar]
  29. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES