Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Sep 1;99(3):1145–1150. doi: 10.1083/jcb.99.3.1145

Myosin rings and spreading in mouse blastomeres

PMCID: PMC2113384  PMID: 6381506

Abstract

The relationship between myosin organization and cell spreading in the preimplantation mouse embryo was studied by indirect immunofluorescence in embryos cultured on lectin-coated substrates. Binding of cell surface polysaccharides to substrate-bound concanavalin A and wheat germ agglutinin induced changes in myosin distribution that resembled those which occur during cell-cell contact interaction. This involved an initial loss of myosin from the contact region that was associated with the development of stable cell-substrate attachments. In addition, a ring of myosin was formed along the edge of the cells' contact to the substrate. The presence of such a ring may be related to the potential for subsequent cell spreading. A myosin ring was also identified in the apical junctional region of the outer morula cells where it similarly separated the cell periphery into contacted and free peripheral domains. Following these changes in myosin organization the embryos spread on the substrate by extension of lamellipodia. These movements were coupled to the dissolution of the myosin ring and the reorganization of myosin into filament bundles. The sequence of changes in the pattern of myosin distribution suggests that contact regulation of myosin organization plays an important role in controlling the spreading behavior of blastomeres and perhaps more generally in the organization of cells into epithelia.

Full Text

The Full Text of this article is available as a PDF (678.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgess D. R., Prum B. E. Reevaluation of brush border motility: calcium induces core filament solution and microvillar vesiculation. J Cell Biol. 1982 Jul;94(1):97–107. doi: 10.1083/jcb.94.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burgess D. R. Reactivation of intestinal epithelial cell brush border motility: ATP-dependent contraction via a terminal web contractile ring. J Cell Biol. 1982 Dec;95(3):853–863. doi: 10.1083/jcb.95.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Calarco P. G., Epstein C. J. Cell surface changes during preimplantation development in the mouse. Dev Biol. 1973 May;32(1):208–213. doi: 10.1016/0012-1606(73)90233-9. [DOI] [PubMed] [Google Scholar]
  4. Damsky C. H., Richa J., Solter D., Knudsen K., Buck C. A. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell. 1983 Sep;34(2):455–466. doi: 10.1016/0092-8674(83)90379-3. [DOI] [PubMed] [Google Scholar]
  5. Ducibella T., Anderson E. Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol. 1975 Nov;47(1):45–58. doi: 10.1016/0012-1606(75)90262-6. [DOI] [PubMed] [Google Scholar]
  6. Ducibella T., Ukena T., Karnovsky M., Anderson E. Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol. 1977 Jul;74(1):153–167. doi: 10.1083/jcb.74.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
  8. Geiger B., Dutton A. H., Tokuyasu K. T., Singer S. J. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec;91(3 Pt 1):614–628. doi: 10.1083/jcb.91.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirokawa N., Keller T. C., 3rd, Chasan R., Mooseker M. S. Mechanism of brush border contractility studied by the quick-freeze, deep-etch method. J Cell Biol. 1983 May;96(5):1325–1336. doi: 10.1083/jcb.96.5.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hull B. E., Staehelin L. A. The terminal web. A reevaluation of its structure and function. J Cell Biol. 1979 Apr;81(1):67–82. doi: 10.1083/jcb.81.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hyafil F., Morello D., Babinet C., Jacob F. A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell. 1980 Oct;21(3):927–934. doi: 10.1016/0092-8674(80)90456-0. [DOI] [PubMed] [Google Scholar]
  12. Kimber S. J., Surani M. A., Barton S. C. Interactions of blastomeres suggest changes in cell surface adhesiveness during the formation of inner cell mass and trophectoderm in the preimplantation mouse embryo. J Embryol Exp Morphol. 1982 Aug;70:133–152. [PubMed] [Google Scholar]
  13. Kimber S. J., Surani M. A. Spreading of blastomeres from eight-cell mouse embryos on lectin-coated beads. J Cell Sci. 1982 Aug;56:191–206. doi: 10.1242/jcs.56.1.191. [DOI] [PubMed] [Google Scholar]
  14. Lehtonen E., Badley R. A. Localization of cytoskeletal proteins in preimplantation mouse embryos. J Embryol Exp Morphol. 1980 Feb;55:211–225. [PubMed] [Google Scholar]
  15. Magnuson T., Demsey A., Stackpole C. W. Characterization of intercellular junctions in the preimplantation mouse embryo by freeze-fracture and thin-section electron microscopy. Dev Biol. 1977 Dec;61(2):252–261. doi: 10.1016/0012-1606(77)90296-2. [DOI] [PubMed] [Google Scholar]
  16. Nicolson G. L., Yanagimachi R., Yanagimachi H. Ultrastructural localization of lectin-binding sites on the zonae pellucidae and plasma membranes of mammalian eggs. J Cell Biol. 1975 Aug;66(2):263–274. doi: 10.1083/jcb.66.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Owaribe K., Kodama R., Eguchi G. Demonstration of contractility of circumferential actin bundles and its morphogenetic significance in pigmented epithelium in vitro and in vivo. J Cell Biol. 1981 Aug;90(2):507–514. doi: 10.1083/jcb.90.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rodewald R., Newman S. B., Karnovsky M. J. Contraction of isolated brush borders from the intestinal epithelium. J Cell Biol. 1976 Sep;70(3):541–554. doi: 10.1083/jcb.70.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sharon N., Lis H. Lectins: cell-agglutinating and sugar-specific proteins. Science. 1972 Sep 15;177(4053):949–959. doi: 10.1126/science.177.4053.949. [DOI] [PubMed] [Google Scholar]
  20. Sobel J. S. Cell-cell contact modulation of myosin organization in the early mouse embryo. Dev Biol. 1983 Nov;100(1):207–213. doi: 10.1016/0012-1606(83)90212-9. [DOI] [PubMed] [Google Scholar]
  21. Sobel J. S. Localization of myosin in the preimplantation mouse embryo. Dev Biol. 1983 Jan;95(1):227–231. doi: 10.1016/0012-1606(83)90021-0. [DOI] [PubMed] [Google Scholar]
  22. Spindle A. An improved culture medium for mouse blastocysts. In Vitro. 1980 Aug;16(8):669–674. doi: 10.1007/BF02619196. [DOI] [PubMed] [Google Scholar]
  23. Surani M. A., Handyside A. H. Reassortment of cells according to position in mouse morulae. J Exp Zool. 1983 Mar;225(3):505–511. doi: 10.1002/jez.1402250320. [DOI] [PubMed] [Google Scholar]
  24. Sutherland A. E., Calarco-Gillam P. G. Analysis of compaction in the preimplantation mouse embryo. Dev Biol. 1983 Dec;100(2):328–338. doi: 10.1016/0012-1606(83)90227-0. [DOI] [PubMed] [Google Scholar]
  25. Weetall H. H., Filbert A. M. Porous glass for affinity chromatography applications. Methods Enzymol. 1974;34:59–72. doi: 10.1016/s0076-6879(74)34007-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES