Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Dec 1;99(6):2024–2033. doi: 10.1083/jcb.99.6.2024

Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts

PMCID: PMC2113579  PMID: 6542105

Abstract

The regulation of collagen fibril, bundle, and lamella formation by the corneal fibroblasts, as well as the organization of these elements into an orthogonal stroma, was studied by transmission electron microscopy and high voltage electron microscopy. Transmission and high voltage electron microscopy of chick embryo corneas each demonstrated a series of unique extracellular compartments. Collagen fibrillogenesis occurred within small surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the recesses resulted in larger recesses and consequent formation of prominent cell surface foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were formed. The surface foldings continued to fuse and the cell surface retracted, forming large surface-associated compartments in which bundles coalesced to form lamellae. High voltage electron microscopy of 0.5 micron sections cut parallel to the corneal surface revealed that the corneal fibroblasts and their processes had two major axes at approximately right angles to one another. The surface compartments involved in the production of the corneal stroma were aligned along the fibroblast axes and the orthogonality of the cell was in register with that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, bundles, and lamellae within a controlled environment and thereby determined the architecture of the corneal stroma by the configuration of the cell and its associated compartments.

Full Text

The Full Text of this article is available as a PDF (6.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bard J. B., Hay E. D. The behavior of fibroblasts from the developing avian cornea. Morphology and movement in situ and in vitro. J Cell Biol. 1975 Nov;67(2PT1):400–418. doi: 10.1083/jcb.67.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruns R. R., Hulmes D. J., Therrien S. F., Gross J. Procollagen segment-long-spacing crystallites: their role in collagen fibrillogenesis. Proc Natl Acad Sci U S A. 1979 Jan;76(1):313–317. doi: 10.1073/pnas.76.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COULOMBRE A. J., COULOMBRE J. L. The role of intraocular pressure in the development of the chick eye. IV. Corneal curvature. AMA Arch Ophthalmol. 1958 Apr;59(4):502–506. doi: 10.1001/archopht.1958.00940050058005. [DOI] [PubMed] [Google Scholar]
  4. Conrad G. W. Collagen and mucopolysaccharide biosynthesis in the developing chick cornea. Dev Biol. 1970 Mar;21(3):292–317. doi: 10.1016/0012-1606(70)90126-0. [DOI] [PubMed] [Google Scholar]
  5. Conrad G. W., Dorfman A. Synthesis of sulfated mucopolysaccharides by chick corneal fibroblasts in vitro. Exp Eye Res. 1974 May;18(5):421–433. doi: 10.1016/0014-4835(74)90079-7. [DOI] [PubMed] [Google Scholar]
  6. Conrad G. W., Hart G. W. Heparan sulfate biosynthesis by embryonic tissues and primary fibroblast populations. Dev Biol. 1975 Jun;44(2):253–269. doi: 10.1016/0012-1606(75)90396-6. [DOI] [PubMed] [Google Scholar]
  7. Creutz C. E., Pollard H. B. Development of a cell-free model for compound exocytosis using components of the chromaffin cell. J Auton Nerv Syst. 1983 Jan;7(1):13–18. doi: 10.1016/0165-1838(83)90065-6. [DOI] [PubMed] [Google Scholar]
  8. Dvorak A. M., Galli S. J., Schulman E. S., Lichtenstein L. M., Dvorak H. F. Basophil and mast cell degranulation: ultrastructural analysis of mechanisms of mediator release. Fed Proc. 1983 May 15;42(8):2510–2515. [PubMed] [Google Scholar]
  9. Dyer R. F., Peppler R. D. Intracellular collagen in the nonpregnant and IUD-containing rat uterus. Anat Rec. 1977 Feb;187(2):241–247. doi: 10.1002/ar.1091870209. [DOI] [PubMed] [Google Scholar]
  10. Fleischmajer R., Olsen B. R., Timpl R., Perlish J. S., Lovelace O. Collagen fibril formation during embryogenesis. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3354–3358. doi: 10.1073/pnas.80.11.3354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fleischmajer R., Timpl R., Tuderman L., Raisher L., Wiestner M., Perlish J. S., Graves P. N. Ultrastructural identification of extension aminopropeptides of type I and III collagens in human skin. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7360–7364. doi: 10.1073/pnas.78.12.7360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gelman R. A., Poppke D. C., Piez K. A. Collagen fibril formation in vitro. The role of the nonhelical terminal regions. J Biol Chem. 1979 Nov 25;254(22):11741–11745. [PubMed] [Google Scholar]
  13. Hart G. W. Biosynthesis of glycosaminolgycans during corneal development. J Biol Chem. 1976 Nov 10;251(21):6513–6521. [PubMed] [Google Scholar]
  14. Hay E. D. Development of the vertebrate cornea. Int Rev Cytol. 1980;63:263–322. doi: 10.1016/s0074-7696(08)61760-x. [DOI] [PubMed] [Google Scholar]
  15. Hay E. D., Linsenmayer T. F., Trelstad R. L., von der Mark K. Origin and distribution of collagens in the developing avian cornea. Curr Top Eye Res. 1979;1:1–35. [PubMed] [Google Scholar]
  16. Hay E. D., Revel J. P. Fine structure of the developing avian cornea. Monogr Dev Biol. 1969;1:1–144. [PubMed] [Google Scholar]
  17. Hulmes D. J., Bruns R. R., Gross J. On the state of aggregation of newly secreted procollagen. Proc Natl Acad Sci U S A. 1983 Jan;80(2):388–392. doi: 10.1073/pnas.80.2.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Linsenmayer T. F., Fitch J. M., Schmid T. M., Zak N. B., Gibney E., Sanderson R. D., Mayne R. Monoclonal antibodies against chicken type V collagen: production, specificity, and use for immunocytochemical localization in embryonic cornea and other organs. J Cell Biol. 1983 Jan;96(1):124–132. doi: 10.1083/jcb.96.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marchi F., Leblond C. P. Collagen biogenesis and assembly into fibrils as shown by ultrastructural and 3H-proline radioautographic studies on the fibroblasts of the rat food pad. Am J Anat. 1983 Oct;168(2):167–197. doi: 10.1002/aja.1001680206. [DOI] [PubMed] [Google Scholar]
  21. Miyahara M., Njieha F. K., Prockop D. J. Formation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases. J Biol Chem. 1982 Jul 25;257(14):8442–8448. [PubMed] [Google Scholar]
  22. Prockop D. J., Kivirikko K. I., Tuderman L., Guzman N. A. The biosynthesis of collagen and its disorders (second of two parts). N Engl J Med. 1979 Jul 12;301(2):77–85. doi: 10.1056/NEJM197907123010204. [DOI] [PubMed] [Google Scholar]
  23. Trelstad R. L., Birk D. E., Silver F. H. Collagen fibrillogenesis in tissues, in a solution and from modeling: a synthesis. J Invest Dermatol. 1982 Jul;79 (Suppl 1):109s–112s. doi: 10.1111/1523-1747.ep12545945. [DOI] [PubMed] [Google Scholar]
  24. Trelstad R. L., Coulombre A. J. Morphogenesis of the collagenous stroma in the chick cornea. J Cell Biol. 1971 Sep;50(3):840–858. doi: 10.1083/jcb.50.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trelstad R. L., Hayashi K. Tendon collagen fibrillogenesis: intracellular subassemblies and cell surface changes associated with fibril growth. Dev Biol. 1979 Aug;71(2):228–242. doi: 10.1016/0012-1606(79)90166-0. [DOI] [PubMed] [Google Scholar]
  26. Trelstad R. L. The bilaterally asymmetrical architecture of the submammalian corneal stroma resembles a cholesteric liquid crystal. Dev Biol. 1982 Jul;92(1):133–134. doi: 10.1016/0012-1606(82)90157-9. [DOI] [PubMed] [Google Scholar]
  27. Welsh R. A., Meyer A. T. Intracellular collagen fibers. In human mesenchymal tumors and inflammatory states. Arch Pathol. 1967 Oct;84(4):354–362. [PubMed] [Google Scholar]
  28. ten Cate A. R. Morphological studies of fibrocytes in connective tissue undergoing rapid remodelling. J Anat. 1972 Sep;112(Pt 3):401–414. [PMC free article] [PubMed] [Google Scholar]
  29. von Der Mark K., Ocalan M. Immunofluorescent localization of type V collagen in the chick embryo with monoclonal antibodies. Coll Relat Res. 1982 Nov;2(6):541–555. doi: 10.1016/s0174-173x(82)80008-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES