Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Oct;170(10):4562–4568. doi: 10.1128/jb.170.10.4562-4568.1988

Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: osmotolerance in relation to physiological state.

A Blomberg 1, C Larsson 1, L Gustafsson 1
PMCID: PMC211491  PMID: 3049540

Abstract

The importance of the physiological state of a culture of Saccharomyces cerevisiae for tolerance to sudden osmotic dehydration was studied, and it was investigated whether specific osmotolerance factors were demonstrable. The microcalorimeter was used to monitor growth, and different physiological states of the culture were selected and their osmotolerance was tested. In addition to cells in the stationary phase, cells from the transition phase between respirofermentative and respiratory catabolism were osmotolerant. S. cerevisiae exhibited ever-changing metabolism during batch growth on either glucose or ethanol as the carbon source. Instantaneous heat production per biomass formation (dQ/dX) and specific activity of sn-glycerol 3-phosphate dehydrogenase (GPDH) (EC 1.1.1.8) were shown to differ for different physiological states. Neither high respiratory activity nor low total cellular activity, nor factors involved in osmoregulation, i.e., intracellular glycerol or activity of GPDH, correlated with the osmotolerant phenotype.

Full text

PDF
4566

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler L., Blomberg A., Nilsson A. Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol. 1985 Apr;162(1):300–306. doi: 10.1128/jb.162.1.300-306.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brettel R., Lamprecht I., Schaarschmidt B. Microcalorimetric investigations of the metabolism of yeasts. VII. Flow-calorimetry of aerobic batch cultures. Radiat Environ Biophys. 1980;18(4):301–309. doi: 10.1007/BF01324273. [DOI] [PubMed] [Google Scholar]
  3. Brown A. D. Compatible solutes and extreme water stress in eukaryotic micro-organisms. Adv Microb Physiol. 1978;17:181–242. doi: 10.1016/s0065-2911(08)60058-2. [DOI] [PubMed] [Google Scholar]
  4. Brown A. D., Simpson J. R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol. 1972 Oct;72(3):589–591. doi: 10.1099/00221287-72-3-589. [DOI] [PubMed] [Google Scholar]
  5. Chen A., Wadsö I. A test and calibration process for microcalorimeters used as thermal power meters. J Biochem Biophys Methods. 1982 Sep;6(4):297–306. doi: 10.1016/0165-022x(82)90011-2. [DOI] [PubMed] [Google Scholar]
  6. Gustafsson L., Norkrans B. On the mechanism of salt tolerance. Production of glycerol and heat during growth of Debaryomyces hansenii. Arch Microbiol. 1976 Nov 2;110(23):177–183. doi: 10.1007/BF00690226. [DOI] [PubMed] [Google Scholar]
  7. Jennings D. H. Polyol metabolism in fungi. Adv Microb Physiol. 1984;25:149–193. doi: 10.1016/s0065-2911(08)60292-1. [DOI] [PubMed] [Google Scholar]
  8. Klingenberg M. Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane. Eur J Biochem. 1970 Apr;13(2):247–252. doi: 10.1111/j.1432-1033.1970.tb00924.x. [DOI] [PubMed] [Google Scholar]
  9. Lang J. M., Cirillo V. P. Glucose transport in a kinaseless Saccharomyces cerevisiae mutant. J Bacteriol. 1987 Jul;169(7):2932–2937. doi: 10.1128/jb.169.7.2932-2937.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Larsson C., Gustafsson L. Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch Microbiol. 1987 May;147(4):358–363. doi: 10.1007/BF00406133. [DOI] [PubMed] [Google Scholar]
  11. Mackenzie K. F., Blomberg A., Brown A. D. Water stress plating hypersensitivity of yeasts. J Gen Microbiol. 1986 Jul;132(7):2053–2056. doi: 10.1099/00221287-132-7-2053. [DOI] [PubMed] [Google Scholar]
  12. Mitchel R. E., Morrison D. P. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and correlation with stationary growth phase. Radiat Res. 1982 May;90(2):284–291. [PubMed] [Google Scholar]
  13. ONISHI H. OSMOPHILIC YEASTS. Adv Food Res. 1963;12:53–94. [PubMed] [Google Scholar]
  14. Parry J. M., Davies P. J., Evans W. E. The effects of "cell age" upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae. Mol Gen Genet. 1976 Jul 5;146(1):27–35. doi: 10.1007/BF00267979. [DOI] [PubMed] [Google Scholar]
  15. Schaarschmidt B., Lamprecht I. Microcalorimetric investigations of the metabolism of yeasts. VI. Diauxy during anaerobic growth on different saccharides. Radiat Environ Biophys. 1977 Jul 29;14(2):153–160. doi: 10.1007/BF01332151. [DOI] [PubMed] [Google Scholar]
  16. Schenberg-Frascino A., Moustacchi E. Lethal and mutagenic effects of elevated temperature on haploid yeast. I. Variations in sensitivity during the cell cycle. Mol Gen Genet. 1972;115(3):243–257. doi: 10.1007/BF00268888. [DOI] [PubMed] [Google Scholar]
  17. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES