Abstract
To study tubulin polymerization and microtubule sliding during spindle elongation in vitro, we developed a method of uncoupling the two processes. When isolated diatom spindles were incubated with biotinylated tubulin (biot-tb) without ATP, biot-tb was incorporated into two regions flanking the zone of microtubule overlap, but the spindles did not elongate. After biot-tb was removed, spindle elongation was initiated by addition of ATP. The incorporated biot-tb was found in the midzone between the original half-spindles. The extent and rate of elongation were increased by preincubation in biot-tb. Serial section reconstruction of spindles elongating in tubulin and ATP showed that the average length of half-spindle microtubules increased due to growth of microtubules from the ends of native microtubules. The characteristic packing pattern between antiparallel microtubules was retained even in the "new" overlap region. Our results suggest that the forces required for spindle elongation are generated by enzymes in the overlap zone that mediate the sliding apart of antiparallel microtubules, and that tubulin polymerization does not contribute to force generation. Changes in the extent of microtubule overlap during spindle elongation were affected by tubulin and ATP concentration in the incubation medium. Spindles continued to elongate even after the overlap zone was composed entirely of newly polymerized microtubules, suggesting that the enzyme responsible for microtubule translocation either is bound to a matrix in the spindle midzone, or else can move on one microtubule toward the spindle midzone and push another microtubule of opposite polarity toward the pole.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aist J. R., Berns M. W. Mechanics of chromosome separation during mitosis in Fusarium (Fungi imperfecti): new evidence from ultrastructural and laser microbeam experiments. J Cell Biol. 1981 Nov;91(2 Pt 1):446–458. doi: 10.1083/jcb.91.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinkley B. R., Cartwright J., Jr Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J Cell Biol. 1971 Aug;50(2):416–431. doi: 10.1083/jcb.50.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cande W. Z., McDonald K. L. In vitro reactivation of anaphase spindle elongation using isolated diatom spindles. Nature. 1985 Jul 11;316(6024):168–170. doi: 10.1038/316168a0. [DOI] [PubMed] [Google Scholar]
- Cande W. Z., McDonald K. Physiological and ultrastructural analysis of elongating mitotic spindles reactivated in vitro. J Cell Biol. 1986 Aug;103(2):593–604. doi: 10.1083/jcb.103.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Leslie R. J., Pickett-Heaps J. D. Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation. J Cell Biol. 1983 Feb;96(2):548–561. doi: 10.1083/jcb.96.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
- Masuda H., Cande W. Z. The role of tubulin polymerization during spindle elongation in vitro. Cell. 1987 Apr 24;49(2):193–202. doi: 10.1016/0092-8674(87)90560-5. [DOI] [PubMed] [Google Scholar]
- McDonald K. L., Edwards M. K., McIntosh J. R. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. Evidence for specific interactions between antiparallel microtubules. J Cell Biol. 1979 Nov;83(2 Pt 1):443–461. doi: 10.1083/jcb.83.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald K. L., Pfister K., Masuda H., Wordeman L., Staiger C., Cande W. Z. Comparison of spindle elongation in vivo and in vitro in Stephanopyxis turris. J Cell Sci Suppl. 1986;5:205–227. doi: 10.1242/jcs.1986.supplement_5.14. [DOI] [PubMed] [Google Scholar]
- McDonald K., Pickett-Heaps J. D., McIntosh J. R., Tippit D. H. On the mechanism of anaphase spindle elongation in Diatoma vulgare. J Cell Biol. 1977 Aug;74(2):377–388. doi: 10.1083/jcb.74.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh J. R., Roos U. P., Neighbors B., McDonald K. L. Architecture of the microtubule component of mitotic spindles from Dictyostelium discoideum. J Cell Sci. 1985 Apr;75:93–129. doi: 10.1242/jcs.75.1.93. [DOI] [PubMed] [Google Scholar]
- Pickett-Heaps J. D., Tippit D. H., Cohn S. A., Spurck T. P. Microtubule dynamics in the spindle. Theoretical aspects of assembly/disassembly reactions in vivo. J Theor Biol. 1986 Jan 21;118(2):153–169. doi: 10.1016/s0022-5193(86)80131-x. [DOI] [PubMed] [Google Scholar]
- Pickett-Heaps J. D., Tippit D. H., Leslie R. Light and electron microscopic observations on cell division in two large pennate diatoms, Hantzschia and Nitzschia. I. Mitosis in vivo. Eur J Cell Biol. 1980 Apr;21(1):1–11. [PubMed] [Google Scholar]
- Pickett-Heaps J. D., Tippit D. H. The diatom spindle in perspective. Cell. 1978 Jul;14(3):455–467. doi: 10.1016/0092-8674(78)90232-5. [DOI] [PubMed] [Google Scholar]
- Saxton W. M., McIntosh J. R. Interzone microtubule behavior in late anaphase and telophase spindles. J Cell Biol. 1987 Aug;105(2):875–886. doi: 10.1083/jcb.105.2.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tippit D. H., Fields C. T., O'Donnell K. L., Pickett-Heaps J. D., McLaughlin D. J. The organization of microtubules during anaphase and telophase spindle elongation in the rust fungus Puccinia. Eur J Cell Biol. 1984 May;34(1):34–44. [PubMed] [Google Scholar]
- Tippit D. H., Pillus L., Pickett-Heaps J. Organization of spindle microtubules in Ochromonas danica. J Cell Biol. 1980 Dec;87(3 Pt 1):531–545. doi: 10.1083/jcb.87.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wordeman L., Cande W. Z. Reactivation of spindle elongation in vitro is correlated with the phosphorylation of a 205 kd spindle-associated protein. Cell. 1987 Aug 14;50(4):535–543. doi: 10.1016/0092-8674(87)90026-2. [DOI] [PubMed] [Google Scholar]
- Wordeman L., McDonald K. L., Cande W. Z. The distribution of cytoplasmic microtubules throughout the cell cycle of the centric diatom Stephanopyxis turris: their role in nuclear migration and positioning the mitotic spindle during cytokinesis. J Cell Biol. 1986 May;102(5):1688–1698. doi: 10.1083/jcb.102.5.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]