Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Dec 1;107(6):2307–2317. doi: 10.1083/jcb.107.6.2307

Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts

PMCID: PMC2115660  PMID: 3198689

Abstract

Using a sensitive and quantitative adhesion assay, we have studied the initial stages of the intercellular adhesion of the C2 mouse myoblast line. After dissociation in low levels of trypsin in EDTA, C2 cells can rapidly reaggregate by Ca2+-independent mechanisms to form large multicellular aggregates. If cells are allowed to recover from dissociation by incubation in defined media, this adhesive system is augmented by a Ca2+-dependent mechanism with maximum recovery seen after 4 h incubation. The Ca2+-independent adhesion system is inhibited by preincubation of cell monolayers with cycloheximide before dissociation. Aggregation is also reduced after exposure to monensin, implicating a role for surface-translocated glycoproteins in this mechanism of adhesion. In coaggregation experiments using C2 myoblasts and 3T3 fibroblasts in which the Ca2+-dependent adhesion system was inactivated, no adhesive specificity between the two cell types was seen. Although synthetic peptides containing the RGD sequence are known to inhibit cell-substratum adhesion in various cell types, incubation of C2 myoblasts with the integrin-binding tetrapeptide, RGDS, greatly stimulated the Ca2+-independent aggregation of these cells while control analogs had no effect. These results show that a Ca2+- independent mechanism alone is sufficient to allow for the rapid formation of multicellular aggregates in a mouse myoblast line, and that many of the requirements and perturbants of the Ca2+-independent system of intercellular myoblast adhesion are similar to those of the Ca2+-dependent adhesion mechanisms.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akeson R., Warren S. L. PC12 adhesion and neurite formation on selected substrates are inhibited by some glycosaminoglycans and a fibronectin-derived tetrapeptide. Exp Cell Res. 1986 Feb;162(2):347–362. doi: 10.1016/0014-4827(86)90340-x. [DOI] [PubMed] [Google Scholar]
  2. Akiyama S. K., Yamada K. M. Fibronectin. Adv Enzymol Relat Areas Mol Biol. 1987;59:1–57. doi: 10.1002/9780470123058.ch1. [DOI] [PubMed] [Google Scholar]
  3. Boucaut J. C., Darribère T., Poole T. J., Aoyama H., Yamada K. M., Thiery J. P. Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol. 1984 Nov;99(5):1822–1830. doi: 10.1083/jcb.99.5.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brackenbury R., Rutishauser U., Edelman G. M. Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci U S A. 1981 Jan;78(1):387–391. doi: 10.1073/pnas.78.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruning J. W., Kardol M. J., Arentzen R. Carboxyfluorescein fluorochromasia assays. I. Non-radioactively labeled cell mediated lympholysis. J Immunol Methods. 1980;33(1):33–44. doi: 10.1016/0022-1759(80)90080-0. [DOI] [PubMed] [Google Scholar]
  6. Buck C. A., Horwitz A. F. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol. 1987;3:179–205. doi: 10.1146/annurev.cb.03.110187.001143. [DOI] [PubMed] [Google Scholar]
  7. Cates G. A., Kaur H., Sanwal B. D. Inhibition of fusion of skeletal myoblasts by tunicamycin and its reversal by N-acetylglucosamine. Can J Biochem Cell Biol. 1984 Jan;62(1):28–35. doi: 10.1139/o84-005. [DOI] [PubMed] [Google Scholar]
  8. Culp L. A. Substrate-attached glycoproteins mediating adhesion of normal and virus-transformed mouse fibroblasts. J Cell Biol. 1974 Oct;63(1):71–83. doi: 10.1083/jcb.63.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Curtis A. S. The measurement of cell adhesiveness by an absolute method. J Embryol Exp Morphol. 1969 Nov;22(3):305–325. [PubMed] [Google Scholar]
  10. Den H. Effect of monensin on myoblast fusion. Biochem Biophys Res Commun. 1985 Jan 16;126(1):313–319. doi: 10.1016/0006-291x(85)90607-2. [DOI] [PubMed] [Google Scholar]
  11. Doherty P., Mann D. A., Walsh F. S. Cholera toxin and dibutyryl cyclic AMP inhibit the expression of neurofilament protein induced by nerve growth factor in cultures of naive and primed PC12 cells. J Neurochem. 1987 Dec;49(6):1676–1687. doi: 10.1111/j.1471-4159.1987.tb02425.x. [DOI] [PubMed] [Google Scholar]
  12. Edelman G. M. Cell adhesion and the molecular processes of morphogenesis. Annu Rev Biochem. 1985;54:135–169. doi: 10.1146/annurev.bi.54.070185.001031. [DOI] [PubMed] [Google Scholar]
  13. Edelman G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol. 1986;2:81–116. doi: 10.1146/annurev.cb.02.110186.000501. [DOI] [PubMed] [Google Scholar]
  14. Edwards J. G., Campbell J. A., Robson R. T., Vicker M. G. Trypsinized BHK21 cells aggregate in the presence of metabolic inhibitors and in the absence of divalent cations. J Cell Sci. 1975 Dec;19(3):653–657. doi: 10.1242/jcs.19.3.653. [DOI] [PubMed] [Google Scholar]
  15. Frazier W., Glaser L. Surface components and cell recognition. Annu Rev Biochem. 1979;48:491–523. doi: 10.1146/annurev.bi.48.070179.002423. [DOI] [PubMed] [Google Scholar]
  16. Garrod D. R., Nicol A. Cell behaviour and molecular mechanisms of cell-cell adhesion. Biol Rev Camb Philos Soc. 1981 May;56(2):199–242. doi: 10.1111/j.1469-185x.1981.tb00348.x. [DOI] [PubMed] [Google Scholar]
  17. Garrod D. R., Steinberg M. S. Tissue-specific sorting-out in two dimensions in relation to contact inhibition of cell movement. Nature. 1973 Aug 31;244(5418):568–569. doi: 10.1038/244568a0. [DOI] [PubMed] [Google Scholar]
  18. Gibralter D., Turner D. C. Dual adhesion systems of chick myoblasts. Dev Biol. 1985 Dec;112(2):292–307. doi: 10.1016/0012-1606(85)90400-2. [DOI] [PubMed] [Google Scholar]
  19. Gilfix B. M., Sanwal B. D. Inhibition of myoblast fusion by tunicamycin and pantomycin. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1184–1191. doi: 10.1016/0006-291x(80)90077-7. [DOI] [PubMed] [Google Scholar]
  20. Ginsberg M., Pierschbacher M. D., Ruoslahti E., Marguerie G., Plow E. Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion. J Biol Chem. 1985 Apr 10;260(7):3931–3936. [PubMed] [Google Scholar]
  21. Goodall H., Johnson M. H. Use of carboxyfluorescein diacetate to study formation of permeable channels between mouse blastomeres. Nature. 1982 Feb 11;295(5849):524–526. doi: 10.1038/295524a0. [DOI] [PubMed] [Google Scholar]
  22. Grunwald G. B., Bromberg R. E., Crowley N. J., Lilien J. Enzymatic dissection of embryonic cell adhesive mechanisms. II. Developmental regulation of an endogenous adhesive system in the chick neural retina. Dev Biol. 1981 Sep;86(2):327–338. doi: 10.1016/0012-1606(81)90190-1. [DOI] [PubMed] [Google Scholar]
  23. Grunwald G. B., Geller R. L., Lilien J. Enzymatic dissection of embryonic cell adhesive mechanisms. J Cell Biol. 1980 Jun;85(3):766–776. doi: 10.1083/jcb.85.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grunwald G. B., Pratt R. S., Lilien J. Enzymic dissection of embryonic cell adhesive mechanisms. III. Immunological identification of a component of the calcium-dependent adhesive system of embryonic chick neural retina cells. J Cell Sci. 1982 Jun;55:69–83. doi: 10.1242/jcs.55.1.69. [DOI] [PubMed] [Google Scholar]
  25. Hausman R. E., Dobi E. T., Woodford E. J., Petrides S., Ernst M., Nichols E. B. Prostaglandin binding activity and myoblast fusion in aggregates of avian myoblasts. Dev Biol. 1986 Jan;113(1):40–48. doi: 10.1016/0012-1606(86)90106-5. [DOI] [PubMed] [Google Scholar]
  26. Haverstick D. M., Cowan J. F., Yamada K. M., Santoro S. A. Inhibition of platelet adhesion to fibronectin, fibrinogen, and von Willebrand factor substrates by a synthetic tetrapeptide derived from the cell-binding domain of fibronectin. Blood. 1985 Oct;66(4):946–952. [PubMed] [Google Scholar]
  27. Humphries M. J., Akiyama S. K., Komoriya A., Olden K., Yamada K. M. Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type-specific adhesion. J Cell Biol. 1986 Dec;103(6 Pt 2):2637–2647. doi: 10.1083/jcb.103.6.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones G. E., Pizzey J. A., Witkowski J. A. The effect of monensin on cell aggregation of normal and dystrophic human skin fibroblasts. Exp Cell Res. 1985 Aug;159(2):540–545. doi: 10.1016/s0014-4827(85)80028-8. [DOI] [PubMed] [Google Scholar]
  29. Jones G. E., Witkowski J. A. A cell surface abnormality in Duchenne muscular dystrophy: intercellular adhesiveness of skin fibroblasts from patients and carriers. Hum Genet. 1983;63(3):232–237. doi: 10.1007/BF00284655. [DOI] [PubMed] [Google Scholar]
  30. Jones G. E., Witkowski J. A. Analysis of skin fibroblast aggregation in Duchenne muscular dystrophy. J Cell Sci. 1981 Apr;48:291–300. doi: 10.1242/jcs.48.1.291. [DOI] [PubMed] [Google Scholar]
  31. Jones G. E., Witkowski J. A. Reduced adhesiveness between skin fibroblasts from patients with Duchenne muscular dystrophy. J Neurol Sci. 1979 Nov;43(3):465–470. doi: 10.1016/0022-510x(79)90025-x. [DOI] [PubMed] [Google Scholar]
  32. KONIGSBERG I. R. Clonal analysis of myogenesis. Science. 1963 Jun 21;140(3573):1273–1284. doi: 10.1126/science.140.3573.1273. [DOI] [PubMed] [Google Scholar]
  33. Knudsen K. A., Horwitz A. F. Differential inhibition of myoblast fusion. Dev Biol. 1978 Oct;66(2):294–307. doi: 10.1016/0012-1606(78)90239-7. [DOI] [PubMed] [Google Scholar]
  34. Knudsen K. A., Horwitz A. F. Tandem events in myoblast fusion. Dev Biol. 1977 Jul 15;58(2):328–338. doi: 10.1016/0012-1606(77)90095-1. [DOI] [PubMed] [Google Scholar]
  35. Knudsen K. A. The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins. J Cell Biol. 1985 Sep;101(3):891–897. doi: 10.1083/jcb.101.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lash J. W., Linask K. K., Yamada K. M. Synthetic peptides that mimic the adhesive recognition signal of fibronectin: differential effects on cell-cell and cell-substratum adhesion in embryonic chick cells. Dev Biol. 1987 Oct;123(2):411–420. doi: 10.1016/0012-1606(87)90399-x. [DOI] [PubMed] [Google Scholar]
  37. Magnani J. L., Thomas W. A., Steinberg M. S. Two distinct adhesion mechanisms in embryonic neural retina cells. I. A kinetic analysis. Dev Biol. 1981 Jan 15;81(1):96–105. doi: 10.1016/0012-1606(81)90351-1. [DOI] [PubMed] [Google Scholar]
  38. McCarthy J. B., Hagen S. T., Furcht L. T. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J Cell Biol. 1986 Jan;102(1):179–188. doi: 10.1083/jcb.102.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. McClay D. R., Ettensohn C. A. Cell adhesion in morphogenesis. Annu Rev Cell Biol. 1987;3:319–345. doi: 10.1146/annurev.cb.03.110187.001535. [DOI] [PubMed] [Google Scholar]
  40. McClay D. R., Wessel G. M., Marchase R. B. Intercellular recognition: quantitation of initial binding events. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4975–4979. doi: 10.1073/pnas.78.8.4975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Menko A. S., Boettiger D. Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell. 1987 Oct 9;51(1):51–57. doi: 10.1016/0092-8674(87)90009-2. [DOI] [PubMed] [Google Scholar]
  42. Nagafuchi A., Shirayoshi Y., Okazaki K., Yasuda K., Takeichi M. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature. 1987 Sep 24;329(6137):341–343. doi: 10.1038/329341a0. [DOI] [PubMed] [Google Scholar]
  43. Naidet C., Sémériva M., Yamada K. M., Thiery J. P. Peptides containing the cell-attachment recognition signal Arg-Gly-Asp prevent gastrulation in Drosophila embryos. Nature. 1987 Jan 22;325(6102):348–350. doi: 10.1038/325348a0. [DOI] [PubMed] [Google Scholar]
  44. Neff N. T., Horwitz A. F. A rapid assay for fusion of embryonic chick myoblasts. Exp Cell Res. 1982 Aug;140(2):479–483. doi: 10.1016/0014-4827(82)90146-x. [DOI] [PubMed] [Google Scholar]
  45. Olden K., Law J., Hunter V. A., Romain R., Parent J. B. Inhibition of fusion of embryonic muscle cells in culture by tunicamycin is prevented by leupeptin. J Cell Biol. 1981 Jan;88(1):199–204. doi: 10.1083/jcb.88.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  47. Pierschbacher M. D., Ruoslahti E., Sundelin J., Lind P., Peterson P. A. The cell attachment domain of fibronectin. Determination of the primary structure. J Biol Chem. 1982 Aug 25;257(16):9593–9597. [PubMed] [Google Scholar]
  48. Pizzey J. A., Bennett F. A., Jones G. E. Monensin inhibits initial spreading of cultured human fibroblasts. Nature. 1983 Sep 22;305(5932):315–317. doi: 10.1038/305315a0. [DOI] [PubMed] [Google Scholar]
  49. Pizzey J. A., Jones G. E. Adhesive interactions between normal and dystrophic human skin fibroblasts. J Neurol Sci. 1985 Jul;69(3):207–221. doi: 10.1016/0022-510x(85)90134-0. [DOI] [PubMed] [Google Scholar]
  50. Pizzey J., Witkowski J., Jones G. Monensin-induced inhibition of cell spreading in normal and dystrophic human fibroblasts. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4960–4964. doi: 10.1073/pnas.81.15.4960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Pytela R., Pierschbacher M. D., Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5766–5770. doi: 10.1073/pnas.82.17.5766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rogers S. L., Letourneau P. C., Peterson B. A., Furcht L. T., McCarthy J. B. Selective interaction of peripheral and central nervous system cells with two distinct cell-binding domains of fibronectin. J Cell Biol. 1987 Sep;105(3):1435–1442. doi: 10.1083/jcb.105.3.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Roseman S. Studies on specific intercellular adhesion. J Biochem. 1985 Mar;97(3):709–718. doi: 10.1093/oxfordjournals.jbchem.a135110. [DOI] [PubMed] [Google Scholar]
  54. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  55. Rutishauser U., Hoffman S., Edelman G. M. Binding properties of a cell adhesion molecule from neural tissue. Proc Natl Acad Sci U S A. 1982 Jan;79(2):685–689. doi: 10.1073/pnas.79.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Saunders S., Bernfield M. Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J Cell Biol. 1988 Feb;106(2):423–430. doi: 10.1083/jcb.106.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sieber F., Roseman S. Quantitative analysis of intercellular adhesive specificity in freshly explanted and cultured cells. J Cell Biol. 1981 Jul;90(1):55–62. doi: 10.1083/jcb.90.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Singer I. I., Kawka D. W., Scott S., Mumford R. A., Lark M. W. The fibronectin cell attachment sequence Arg-Gly-Asp-Ser promotes focal contact formation during early fibroblast attachment and spreading. J Cell Biol. 1987 Mar;104(3):573–584. doi: 10.1083/jcb.104.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Steinberg M. S., Armstrong P. B., Granger R. E. On the recovery of adhesiveness by trypsin-dissociated cells. J Membr Biol. 1973;13(2):97–128. doi: 10.1007/BF01868223. [DOI] [PubMed] [Google Scholar]
  60. Streeter H. B., Rees D. A. Fibroblast adhesion to RGDS shows novel features compared with fibronectin. J Cell Biol. 1987 Jul;105(1):507–515. doi: 10.1083/jcb.105.1.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Takeichi M., Atsumi T., Yoshida C., Uno K., Okada T. S. Selective adhesion of embryonal carcinoma cells and differentiated cells by Ca2+-dependent sites. Dev Biol. 1981 Oct 30;87(2):340–350. doi: 10.1016/0012-1606(81)90157-3. [DOI] [PubMed] [Google Scholar]
  62. Takeichi M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1977 Nov;75(2 Pt 1):464–474. doi: 10.1083/jcb.75.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Takeichi M., Ozaki H. S., Tokunaga K., Okada T. S. Experimental manipulation of cell surface to affect cellular recognition mechanisms. Dev Biol. 1979 May;70(1):195–205. doi: 10.1016/0012-1606(79)90016-2. [DOI] [PubMed] [Google Scholar]
  64. Tartakoff A. M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983 Apr;32(4):1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  65. Thomas W. A., Thomson J., Magnani J. L., Steinberg M. S. Two distinct adhesion mechanisms in embryonic neural retina cells. III. Functional specificity. Dev Biol. 1981 Jan 30;81(2):379–385. doi: 10.1016/0012-1606(81)90304-3. [DOI] [PubMed] [Google Scholar]
  66. Uchida N., Smilowitz H., Ledger P. W., Tanzer M. L. Kinetic studies of the intracellular transport of procollagen and fibronectin in human fibroblasts. Effects of the monovalent ionophore, monensin. J Biol Chem. 1980 Sep 25;255(18):8638–8644. [PubMed] [Google Scholar]
  67. Uchida N., Smilowitz H., Tanzer M. L. Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1868–1872. doi: 10.1073/pnas.76.4.1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Umbreit J., Roseman S. A requirement for reversible binding between aggregating embryonic cells before stable adhesion. J Biol Chem. 1975 Dec 25;250(24):9360–9368. [PubMed] [Google Scholar]
  69. Urushihara H., Ozaki H. S., Takeichi M. Immunological detection of cell surface components related with aggregation of Chinese hamster and chick embryonic cells. Dev Biol. 1979 May;70(1):206–216. doi: 10.1016/0012-1606(79)90017-4. [DOI] [PubMed] [Google Scholar]
  70. Urushihara H., Takeichi M. Cell-cell adhesion molecule: identification of a glycoprotein relevant to the Ca2+-independent aggregation of Chinese hamster fibroblasts. Cell. 1980 Jun;20(2):363–371. doi: 10.1016/0092-8674(80)90622-4. [DOI] [PubMed] [Google Scholar]
  71. WEISS L., LACHMANN P. J. THE ORIGIN OF AN ANTIGENIC ZONE SURROUNDING HELA CELLS CULTURED ON GLASS. Exp Cell Res. 1964 Oct;36:86–91. doi: 10.1016/0014-4827(64)90162-4. [DOI] [PubMed] [Google Scholar]
  72. Yaffe D. Developmental changes preceding cell fusion during muscle differentiation in vitro. Exp Cell Res. 1971 May;66(1):33–48. doi: 10.1016/s0014-4827(71)80008-3. [DOI] [PubMed] [Google Scholar]
  73. Yaffe D., Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977 Dec 22;270(5639):725–727. doi: 10.1038/270725a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES