Abstract
In higher vertebrates the cytoskeleton of glial cells, notably astrocytes, is characterized (a) by masses of intermediate filaments (IFs) that contain the hallmark protein of glial differentiation, the glial filament protein (GFP); and (b) by the absence of cytokeratin IFs and IF-anchoring membrane domains of the desmosome type. Here we report that in certain amphibian species (Xenopus laevis, Rana ridibunda, and Pleurodeles waltlii) the astrocytes of the optic nerve contain a completely different type of cytoskeleton. In immunofluorescence microscopy using antibodies specific for different IF and desmosomal proteins, the astrocytes of this nerve are positive for cytokeratins and desmoplakins; by electron microscopy these reactions could be correlated to IF bundles and desmosomes. By gel electrophoresis of cytoskeletal proteins, combined with immunoblotting, we demonstrate the cytokeratinous nature of the major IF proteins of these astroglial cells, comprising at least three major cytokeratins. In this tissue we have not detected a major IF protein that could correspond to GFP. In contrast, cytokeratin IFs and desmosomes have not been detected in the glial cells of brain and spinal cord or in certain peripheral nerves, such as the sciatic nerve. These results provide an example of the formation of a cytokeratin cytoskeleton in the context of a nonepithelial differentiation program. They further show that glial differentiation and functions, commonly correlated with the formation of GFP filaments, are not necessarily dependent on GFP but can also be achieved with structures typical of epithelial differentiation; i.e., cytokeratin IFs and desmosomes. We discuss the cytoskeletal differences of glial cells in different kinds of nerves in the same animal, with special emphasis on the optic nerve of lower vertebrates as a widely studied model system of glial development and nerve regeneration.
Full Text
The Full Text of this article is available as a PDF (5.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achstätter T., Moll R., Anderson A., Kuhn C., Pitz S., Schwechheimer K., Franke W. W. Expression of glial filament protein (GFP) in nerve sheaths and non-neural cells re-examined using monoclonal antibodies, with special emphasis on the co-expression of GFP and cytokeratins in epithelial cells of human salivary gland and pleomorphic adenomas. Differentiation. 1986;31(3):206–227. doi: 10.1111/j.1432-0436.1986.tb00401.x. [DOI] [PubMed] [Google Scholar]
- Achtstaetter T., Hatzfeld M., Quinlan R. A., Parmelee D. C., Franke W. W. Separation of cytokeratin polypeptides by gel electrophoretic and chromatographic techniques and their identification by immunoblotting. Methods Enzymol. 1986;134:355–371. doi: 10.1016/0076-6879(86)34102-8. [DOI] [PubMed] [Google Scholar]
- Anderson M. J., Swanson K. A., Waxman S. G., Eng L. F. Glial fibrillary acidic protein in regenerating teleost spinal cord. J Histochem Cytochem. 1984 Oct;32(10):1099–1106. doi: 10.1177/32.10.6481149. [DOI] [PubMed] [Google Scholar]
- Barber P. C., Lindsay R. M. Schwann cells of the olfactory nerves contain glial fibrillary acidic protein and resemble astrocytes. Neuroscience. 1982;7(12):3077–3090. doi: 10.1016/0306-4522(82)90231-7. [DOI] [PubMed] [Google Scholar]
- Bartlett P. F., Reid H. H., Bailey K. A., Bernard O. Immortalization of mouse neural precursor cells by the c-myc oncogene. Proc Natl Acad Sci U S A. 1988 May;85(9):3255–3259. doi: 10.1073/pnas.85.9.3255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bignami A., Raju T., Dahl D. Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev Biol. 1982 Jun;91(2):286–295. doi: 10.1016/0012-1606(82)90035-5. [DOI] [PubMed] [Google Scholar]
- Björklund H., Dahl D., Seiger A. Neurofilament and glial fibrillary acid protein-related immunoreactivity in rodent enteric nervous system. Neuroscience. 1984 May;12(1):277–287. doi: 10.1016/0306-4522(84)90153-2. [DOI] [PubMed] [Google Scholar]
- Bracho H., Orkand P. M., Orkand R. K. A further study of the fine structure and membrane properties of neuroglia in the optic nerve of Necturus. J Neurobiol. 1975 Jul;6(4):395–410. doi: 10.1002/neu.480060405. [DOI] [PubMed] [Google Scholar]
- Brown D. C., Theaker J. M., Banks P. M., Gatter K. C., Mason D. Y. Cytokeratin expression in smooth muscle and smooth muscle tumours. Histopathology. 1987 May;11(5):477–486. doi: 10.1111/j.1365-2559.1987.tb02656.x. [DOI] [PubMed] [Google Scholar]
- Chi C., Carlson S. D. Membrane specializations in the first optic neuropil of the housefly, Musca domestica L. II. Junctions between glial cells. J Neurocytol. 1980 Aug;9(4):451–469. doi: 10.1007/BF01204836. [DOI] [PubMed] [Google Scholar]
- Colonnier M., Tremblay J. P., McLennan H. Synaptic contacts on glial cells in the abdominal ganglion of Aplysia californica. J Comp Neurol. 1979 Dec 1;188(3):391–400. doi: 10.1002/cne.901880304. [DOI] [PubMed] [Google Scholar]
- Cosgrove M., Fitzgibbons P. L., Sherrod A., Chandrasoma P. T., Martin S. E. Intermediate filament expression in astrocytic neoplasms. Am J Surg Pathol. 1989 Feb;13(2):141–145. doi: 10.1097/00000478-198902000-00007. [DOI] [PubMed] [Google Scholar]
- Cowin P., Kapprell H. P., Franke W. W., Tamkun J., Hynes R. O. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell. 1986 Sep 26;46(7):1063–1073. doi: 10.1016/0092-8674(86)90706-3. [DOI] [PubMed] [Google Scholar]
- Cowin P., Kapprell H. P., Franke W. W. The complement of desmosomal plaque proteins in different cell types. J Cell Biol. 1985 Oct;101(4):1442–1454. doi: 10.1083/jcb.101.4.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cullen M. J., Webster H. D. Remodelling of optic nerve myelin sheaths and axons during metamorphosis in Xenopus laevis. J Comp Neurol. 1979 Mar 15;184(2):353–362. doi: 10.1002/cne.901840209. [DOI] [PubMed] [Google Scholar]
- Dahl D., Chi N. H., Miles L. E., Nguyen B. T., Bignami A. Glial fibrillary acidic (GFA) protein in Schwann cells: fact or artifact? J Histochem Cytochem. 1982 Sep;30(9):912–918. doi: 10.1177/30.9.6182187. [DOI] [PubMed] [Google Scholar]
- Dahl D., Crosby C. J., Sethi J. S., Bignami A. Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J Comp Neurol. 1985 Sep 1;239(1):75–88. doi: 10.1002/cne.902390107. [DOI] [PubMed] [Google Scholar]
- Dahl D., Rueger D. C., Bignami A., Weber K., Osborn M. Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol. 1981 Jun;24(2):191–196. [PubMed] [Google Scholar]
- Dahl D. The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination. J Neurosci Res. 1981;6(6):741–748. doi: 10.1002/jnr.490060608. [DOI] [PubMed] [Google Scholar]
- Debus E., Weber K., Osborn M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation. 1983;25(2):193–203. doi: 10.1111/j.1432-0436.1984.tb01355.x. [DOI] [PubMed] [Google Scholar]
- Dehner L. P., Abenoza P., Sibley R. K. Primary cerebral neuroectodermal tumors: neuroblastoma, differentiated neuroblastoma, and composite neuroectodermal tumor. Ultrastruct Pathol. 1988 Sep-Oct;12(5):479–494. doi: 10.3109/01913128809032233. [DOI] [PubMed] [Google Scholar]
- Dixon R. G., Eng L. F. Glial fibrillary acidic protein in the optic nerve of the developing albino rat: an immunoperoxidase study of paraffin-embedded tissue. J Comp Neurol. 1981 Sep 1;201(1):15–24. doi: 10.1002/cne.902010103. [DOI] [PubMed] [Google Scholar]
- Eng L. F., Smith M. E., de Vellis J., Skoff R. P. Recent studies of the glial fibrillary acidic protein. Ann N Y Acad Sci. 1985;455:525–537. doi: 10.1111/j.1749-6632.1985.tb50433.x. [DOI] [PubMed] [Google Scholar]
- Eng L. F., Vanderhaeghen J. J., Bignami A., Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971 May 7;28(2):351–354. doi: 10.1016/0006-8993(71)90668-8. [DOI] [PubMed] [Google Scholar]
- Fisher M., Mullen R. J. Neuronal influence on glial enzyme expression: evidence from chimeric mouse cerebellum. Neuron. 1988 Apr;1(2):151–157. doi: 10.1016/0896-6273(88)90199-7. [DOI] [PubMed] [Google Scholar]
- Fouquet B., Herrmann H., Franz J. K., Franke W. W. Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia. Development. 1988 Dec;104(4):533–548. doi: 10.1242/dev.104.4.533. [DOI] [PubMed] [Google Scholar]
- Franke W. W., Grund C., Achtstätter T. Co-expression of cytokeratins and neurofilament proteins in a permanent cell line: cultured rat PC12 cells combine neuronal and epithelial features. J Cell Biol. 1986 Nov;103(5):1933–1943. doi: 10.1083/jcb.103.5.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke W. W., Moll R. Cytoskeletal components of lymphoid organs. I. Synthesis of cytokeratins 8 and 18 and desmin in subpopulations of extrafollicular reticulum cells of human lymph nodes, tonsils, and spleen. Differentiation. 1987;36(2):145–163. doi: 10.1111/j.1432-0436.1987.tb00189.x. [DOI] [PubMed] [Google Scholar]
- Franke W. W., Schmid E., Osborn M., Weber K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5034–5038. doi: 10.1073/pnas.75.10.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke W. W., Schmid E., Schiller D. L., Winter S., Jarasch E. D., Moll R., Denk H., Jackson B. W., Illmensee K. Differentiation-related patterns of expression of proteins of intermediate-size filaments in tissues and cultured cells. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):431–453. doi: 10.1101/sqb.1982.046.01.041. [DOI] [PubMed] [Google Scholar]
- Franke W. W., Schmid E., Winter S., Osborn M., Weber K. Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res. 1979 Oct 1;123(1):25–46. doi: 10.1016/0014-4827(79)90418-x. [DOI] [PubMed] [Google Scholar]
- Franko M. C., Gibbs C. J., Jr, Rhoades D. A., Gajdusek D. C. Monoclonal antibody analysis of keratin expression in the central nervous system. Proc Natl Acad Sci U S A. 1987 May;84(10):3482–3485. doi: 10.1073/pnas.84.10.3482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franz J. K., Franke W. W. Cloning of cDNA and amino acid sequence of a cytokeratin expressed in oocytes of Xenopus laevis. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6475–6479. doi: 10.1073/pnas.83.17.6475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franz J. K., Gall L., Williams M. A., Picheral B., Franke W. W. Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frog Xenopus. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6254–6258. doi: 10.1073/pnas.80.20.6254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freeman M. R., Sueoka N. Induction and segregation of glial intermediate filament expression in the RT4 family of peripheral nervous system cell lines. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5808–5812. doi: 10.1073/pnas.84.16.5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godsave S. F., Anderton B. H., Wylie C. C. The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis. J Embryol Exp Morphol. 1986 Sep;97:201–223. [PubMed] [Google Scholar]
- Herrmann H., Fouquet B., Franke W. W. Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. Development. 1989 Feb;105(2):279–298. doi: 10.1242/dev.105.2.279. [DOI] [PubMed] [Google Scholar]
- Hughes S. M., Raff M. C. An inducer protein may control the timing of fate switching in a bipotential glial progenitor cell in rat optic nerve. Development. 1987 Sep;101(1):157–167. [PubMed] [Google Scholar]
- Jahn L., Fouquet B., Rohe K., Franke W. W. Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man. Differentiation. 1987;36(3):234–254. doi: 10.1111/j.1432-0436.1987.tb00198.x. [DOI] [PubMed] [Google Scholar]
- Jessen K. R., Mirsky R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature. 1980 Aug 14;286(5774):736–737. doi: 10.1038/286736a0. [DOI] [PubMed] [Google Scholar]
- Jones P. S., Tesser P., Keyser K. T., Quitschke W., Samadi R., Karten H. J., Schechter N. Immunohistochemical localization of intermediate filament proteins of neuronal and nonneuronal origin in the goldfish optic nerve: specific molecular markers for optic nerve structures. J Neurochem. 1986 Oct;47(4):1226–1234. doi: 10.1111/j.1471-4159.1986.tb00744.x. [DOI] [PubMed] [Google Scholar]
- Kartenbeck J., Schwechheimer K., Moll R., Franke W. W. Attachment of vimentin filaments to desmosomal plaques in human meningiomal cells and arachnoidal tissue. J Cell Biol. 1984 Mar;98(3):1072–1081. doi: 10.1083/jcb.98.3.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuruc N., Franke W. W. Transient coexpression of desmin and cytokeratins 8 and 18 in developing myocardial cells of some vertebrate species. Differentiation. 1988 Sep;38(3):177–193. doi: 10.1111/j.1432-0436.1988.tb00212.x. [DOI] [PubMed] [Google Scholar]
- Kuwabara T. Development of the optic nerve of the rat. Invest Ophthalmol. 1975 Oct;14(10):732–745. [PubMed] [Google Scholar]
- Liem R. K., Yen S. H., Salomon G. D., Shelanski M. L. Intermediate filaments in nervous tissues. J Cell Biol. 1978 Dec;79(3):637–645. doi: 10.1083/jcb.79.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lillien L. E., Sendtner M., Rohrer H., Hughes S. M., Raff M. C. Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes. Neuron. 1988 Aug;1(6):485–494. doi: 10.1016/0896-6273(88)90179-1. [DOI] [PubMed] [Google Scholar]
- MATURANA H. R. The fine anatomy of the optic nerve of anurans--an electron microscope study. J Biophys Biochem Cytol. 1960 Feb;7:107–120. doi: 10.1083/jcb.7.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maggs A., Scholes J. Glial domains and nerve fiber patterns in the fish retinotectal pathway. J Neurosci. 1986 Feb;6(2):424–438. doi: 10.1523/JNEUROSCI.06-02-00424.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannoji H., Becker L. E. Ependymal and choroid plexus tumors. Cytokeratin and GFAP expression. Cancer. 1988 Apr 1;61(7):1377–1385. doi: 10.1002/1097-0142(19880401)61:7<1377::aid-cncr2820610717>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
- Markl J., Franke W. W. Localization of cytokeratins in tissues of the rainbow trout: fundamental differences in expression pattern between fish and higher vertebrates. Differentiation. 1988 Dec;39(2):97–122. doi: 10.1111/j.1432-0436.1988.tb00086.x. [DOI] [PubMed] [Google Scholar]
- Miyatani S., Winkles J. A., Sargent T. D., Dawid I. B. Stage-specific keratins in Xenopus laevis embryos and tadpoles: the XK81 gene family. J Cell Biol. 1986 Nov;103(5):1957–1965. doi: 10.1083/jcb.103.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
- Nakazato Y., Ishida Y., Takahashi K., Suzuki K. Immunohistochemical distribution of S-100 protein and glial fibrillary acidic protein in normal and neoplastic salivary glands. Virchows Arch A Pathol Anat Histopathol. 1985;405(3):299–310. doi: 10.1007/BF00710066. [DOI] [PubMed] [Google Scholar]
- Newman E. A. High potassium conductance in astrocyte endfeet. Science. 1986 Jul 25;233(4762):453–454. doi: 10.1126/science.3726539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordlander R. H., Singer M. Electron microscopy of severed motor fibers in the crayfish. Z Zellforsch Mikrosk Anat. 1972;126(2):157–181. doi: 10.1007/BF00307214. [DOI] [PubMed] [Google Scholar]
- Ortonne J. P., Verrando P., Pautrat G., Darmon M. Lamellar cells of sensory receptors and perineural cells of nerve endings of pig skin contain cytokeratins. Virchows Arch A Pathol Anat Histopathol. 1987;410(6):547–552. doi: 10.1007/BF00781691. [DOI] [PubMed] [Google Scholar]
- Osborn M., Weber K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest. 1983 Apr;48(4):372–394. [PubMed] [Google Scholar]
- Owaribe K., Kartenbeck J., Rungger-Brändle E., Franke W. W. Cytoskeletons of retinal pigment epithelial cells: interspecies differences of expression patterns indicate independence of cell function from the specific complement of cytoskeletal proteins. Cell Tissue Res. 1988 Nov;254(2):301–315. doi: 10.1007/BF00225803. [DOI] [PubMed] [Google Scholar]
- Pachter J. S., Liem R. K. The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve. Dev Biol. 1984 May;103(1):200–210. doi: 10.1016/0012-1606(84)90021-6. [DOI] [PubMed] [Google Scholar]
- Quitschke W., Jones P. S., Schechter N. Survey of intermediate filament proteins in optic nerve and spinal cord: evidence for differential expression. J Neurochem. 1985 May;44(5):1465–1476. doi: 10.1111/j.1471-4159.1985.tb08784.x. [DOI] [PubMed] [Google Scholar]
- Quitschke W., Schechter N. Homology and diversity between intermediate filament proteins of neuronal and nonneuronal origin in goldfish optic nerve. J Neurochem. 1986 Feb;46(2):545–555. doi: 10.1111/j.1471-4159.1986.tb13002.x. [DOI] [PubMed] [Google Scholar]
- Raff M. C., Abney E. R., Cohen J., Lindsay R., Noble M. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci. 1983 Jun;3(6):1289–1300. doi: 10.1523/JNEUROSCI.03-06-01289.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raju T., Bignami A., Dahl D. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev Biol. 1981 Jul 30;85(2):344–357. doi: 10.1016/0012-1606(81)90266-9. [DOI] [PubMed] [Google Scholar]
- Reier P. J. Penetration of grafted astrocytic scars by regenerating optic nerve axons in Xenopus tadpoles. Brain Res. 1979 Mar 23;164:61–68. doi: 10.1016/0006-8993(79)90006-4. [DOI] [PubMed] [Google Scholar]
- Rungger-Brändle E., Englert U., Leuenberger P. M. Exocytic clearing of degraded membrane material from pigment epithelial cells in frog retina. Invest Ophthalmol Vis Sci. 1987 Dec;28(12):2026–2037. [PubMed] [Google Scholar]
- Saint Marie R. L., Carlson S. D. Glial membrane specializations and the compartmentalization of the lamina ganglionaris of the housefly compound eye. J Neurocytol. 1983 Apr;12(2):243–275. doi: 10.1007/BF01148464. [DOI] [PubMed] [Google Scholar]
- Scheithauer B. W., Bruner J. M. The ultrastructural spectrum of astrocytic neoplasms. Ultrastruct Pathol. 1987;11(5-6):535–581. doi: 10.3109/01913128709048447. [DOI] [PubMed] [Google Scholar]
- Schmid E., Tapscott S., Bennett G. S., Croop J., Fellini S. A., Holtzer H., Franke W. W. Differential location of different types of intermediate-sized filaments in various tissues of the chicken embryo. Differentiation. 1979;15(1):27–40. doi: 10.1111/j.1432-0436.1979.tb01031.x. [DOI] [PubMed] [Google Scholar]
- Schnitzer J., Franke W. W., Schachner M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol. 1981 Aug;90(2):435–447. doi: 10.1083/jcb.90.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw G., Osborn M., Weber K. An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol. 1981 Dec;26(1):68–82. [PubMed] [Google Scholar]
- Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
- Stensaas L. J. The ultrastructure of astrocytes, oligodendrocytes, and microglia in the optic nerve of urodele amphibians (A. punctatum, T. pyrrhogaster, T. viridescens). J Neurocytol. 1977 Jun;6(3):269–286. doi: 10.1007/BF01175191. [DOI] [PubMed] [Google Scholar]
- Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
- Tsukita S., Ishikawa H., Kurokawa M. Isolation of 10-nm filaments from astrocytes in the mouse optic nerve. J Cell Biol. 1981 Jan;88(1):245–250. doi: 10.1083/jcb.88.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Muijen G. N., Ruiter D. J., Warnaar S. O. Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab Invest. 1987 Oct;57(4):359–369. [PubMed] [Google Scholar]
- Waxman S. G., Black J. A. Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions. Brain Res. 1984 Aug 6;308(1):77–87. doi: 10.1016/0006-8993(84)90919-3. [DOI] [PubMed] [Google Scholar]
- Yen S. H., Fields K. L. Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system. J Cell Biol. 1981 Jan;88(1):115–126. doi: 10.1083/jcb.88.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]