Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Dec 1;109(6):3465–3476. doi: 10.1083/jcb.109.6.3465

Intercellular adhesion mediated by human muscle neural cell adhesion molecule: effects of alternative exon use

PMCID: PMC2115936  PMID: 2532218

Abstract

Mouse 3T3 fibroblasts were permanently transfected with cDNAs encoding isoforms of the neural cell adhesion molecule (N-CAM) present in human skeletal muscle and brain. Parental and transfected cells were then used in a range of adhesion assays. In the absence of external shear forces, transfection with cDNAs encoding either transmembrane or glycosylphosphatidylinositol (GPI)-linked N-CAM species significantly increased the intercellular adhesiveness of 3T3 cells in suspension. Transfection of a cDNA encoding a secreted N-CAM isoform was without effect on adhesion. Cells transfected with cDNAs containing or lacking the muscle-specific domain 1 sequence, a four-exon group spliced into the muscle but not the brain GPI-linked N-CAM species, were equally adhesive in the assays used. We also demonstrate that N-CAM-mediated intercellular adhesiveness is inhibited by 0.2 mg/ml heparin; but, at higher concentrations, reduced adhesion of parental cells was also seen. Coaggregation of fluorescently labeled and unlabeled cell populations was performed and measured by comparing their distribution within aggregates with distributions that assume nonspecific (random) aggregation. These studies demonstrate that random aggregation occurs between transfected cells expressing the transmembrane and GPI-linked N- CAM species and between parental cells and those expressing the secreted N-CAM isoform. Other combinations of these populations tested exhibited partial adhesive specificity, indicating homophilic binding between surface-bound N-CAM. Thus, the approach exploited here allows for a full analysis of the requirements, characteristics, and specificities of the adhesive behavior of individual N-CAM isoforms.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acheson A., Rutishauser U. Neural cell adhesion molecule regulates cell contact-mediated changes in choline acetyltransferase activity of embryonic chick sympathetic neurons. J Cell Biol. 1988 Feb;106(2):479–486. doi: 10.1083/jcb.106.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barton C. H., Dickson G., Gower H. J., Rowett L. H., Putt W., Elsom V., Moore S. E., Goridis C., Walsh F. S. Complete sequence and in vitro expression of a tissue-specific phosphatidylinositol-linked N-CAM isoform from skeletal muscle. Development. 1988 Sep;104(1):165–173. doi: 10.1242/dev.104.1.165. [DOI] [PubMed] [Google Scholar]
  3. Bixby J. L., Pratt R. S., Lilien J., Reichardt L. F. Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Ca2+-dependent and -independent cell adhesion molecules. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2555–2559. doi: 10.1073/pnas.84.8.2555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brackenbury R., Rutishauser U., Edelman G. M. Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci U S A. 1981 Jan;78(1):387–391. doi: 10.1073/pnas.78.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buck C. A., Horwitz A. F. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol. 1987;3:179–205. doi: 10.1146/annurev.cb.03.110187.001143. [DOI] [PubMed] [Google Scholar]
  6. Cole G. J., Glaser L. A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion. J Cell Biol. 1986 Feb;102(2):403–412. doi: 10.1083/jcb.102.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole G. J., Schubert D., Glaser L. Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol. 1985 Apr;100(4):1192–1199. doi: 10.1083/jcb.100.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Covault J., Sanes J. R. Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J Cell Biol. 1986 Mar;102(3):716–730. doi: 10.1083/jcb.102.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cunningham B. A., Hemperly J. J., Murray B. A., Prediger E. A., Brackenbury R., Edelman G. M. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science. 1987 May 15;236(4803):799–806. doi: 10.1126/science.3576199. [DOI] [PubMed] [Google Scholar]
  10. Curtis A. S. The measurement of cell adhesiveness by an absolute method. J Embryol Exp Morphol. 1969 Nov;22(3):305–325. [PubMed] [Google Scholar]
  11. Dickson G., Gower H. J., Barton C. H., Prentice H. M., Elsom V. L., Moore S. E., Cox R. D., Quinn C., Putt W., Walsh F. S. Human muscle neural cell adhesion molecule (N-CAM): identification of a muscle-specific sequence in the extracellular domain. Cell. 1987 Sep 25;50(7):1119–1130. doi: 10.1016/0092-8674(87)90178-4. [DOI] [PubMed] [Google Scholar]
  12. Doherty P., Barton C. H., Dickson G., Seaton P., Rowett L. H., Moore S. E., Gower H. J., Walsh F. S. Neuronal process outgrowth of human sensory neurons on monolayers of cells transfected with cDNAs for five human N-CAM isoforms. J Cell Biol. 1989 Aug;109(2):789–798. doi: 10.1083/jcb.109.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edelman G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol. 1986;2:81–116. doi: 10.1146/annurev.cb.02.110186.000501. [DOI] [PubMed] [Google Scholar]
  14. Edelman G. M. Cell adhesion molecules. Science. 1983 Feb 4;219(4584):450–457. doi: 10.1126/science.6823544. [DOI] [PubMed] [Google Scholar]
  15. Edelman G. M., Murray B. A., Mege R. M., Cunningham B. A., Gallin W. J. Cellular expression of liver and neural cell adhesion molecules after transfection with their cDNAs results in specific cell-cell binding. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8502–8506. doi: 10.1073/pnas.84.23.8502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frazier W., Glaser L. Surface components and cell recognition. Annu Rev Biochem. 1979;48:491–523. doi: 10.1146/annurev.bi.48.070179.002423. [DOI] [PubMed] [Google Scholar]
  17. Garrod D. R., Born G. V. Effect of temperature on the mutual adhesion of preaggregation cells of the slime mould, Dictyostelium discoideum. J Cell Sci. 1971 May;8(3):751–765. doi: 10.1242/jcs.8.3.751. [DOI] [PubMed] [Google Scholar]
  18. Garrod D. R., Nicol A. Cell behaviour and molecular mechanisms of cell-cell adhesion. Biol Rev Camb Philos Soc. 1981 May;56(2):199–242. doi: 10.1111/j.1469-185x.1981.tb00348.x. [DOI] [PubMed] [Google Scholar]
  19. Gibralter D., Turner D. C. Dual adhesion systems of chick myoblasts. Dev Biol. 1985 Dec;112(2):292–307. doi: 10.1016/0012-1606(85)90400-2. [DOI] [PubMed] [Google Scholar]
  20. Gower H. J., Barton C. H., Elsom V. L., Thompson J., Moore S. E., Dickson G., Walsh F. S. Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell. 1988 Dec 23;55(6):955–964. doi: 10.1016/0092-8674(88)90241-3. [DOI] [PubMed] [Google Scholar]
  21. Grumet M., Rutishauser U., Edelman G. M. Neural cell adhesion molecule is on embryonic muscle cells and mediates adhesion to nerve cells in vitro. Nature. 1982 Feb 25;295(5851):693–695. doi: 10.1038/295693a0. [DOI] [PubMed] [Google Scholar]
  22. Gunning P., Leavitt J., Muscat G., Ng S. Y., Kedes L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4831–4835. doi: 10.1073/pnas.84.14.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hunkapiller T., Hood L. The growing immunoglobulin gene superfamily. Nature. 1986 Sep 4;323(6083):15–16. doi: 10.1038/323015a0. [DOI] [PubMed] [Google Scholar]
  24. Jessell T. M. Adhesion molecules and the hierarchy of neural development. Neuron. 1988 Mar;1(1):3–13. doi: 10.1016/0896-6273(88)90204-8. [DOI] [PubMed] [Google Scholar]
  25. Keilhauer G., Faissner A., Schachner M. Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature. 1985 Aug 22;316(6030):728–730. doi: 10.1038/316728a0. [DOI] [PubMed] [Google Scholar]
  26. Laterra J., Culp L. A. Differences in hyaluronate binding to plasma and cell surface fibronectins. Requirement for aggregation. J Biol Chem. 1982 Jan 25;257(2):719–726. [PubMed] [Google Scholar]
  27. Laterra J., Silbert J. E., Culp L. A. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J Cell Biol. 1983 Jan;96(1):112–123. doi: 10.1083/jcb.96.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moore S. E., Thompson J., Kirkness V., Dickson J. G., Walsh F. S. Skeletal muscle neural cell adhesion molecule (N-CAM): changes in protein and mRNA species during myogenesis of muscle cell lines. J Cell Biol. 1987 Sep;105(3):1377–1386. doi: 10.1083/jcb.105.3.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moore S. E., Walsh F. S. Specific regulation of N-CAM/D2-CAM cell adhesion molecule during skeletal muscle development. EMBO J. 1985 Mar;4(3):623–630. doi: 10.1002/j.1460-2075.1985.tb03675.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murray B. A., Owens G. C., Prediger E. A., Crossin K. L., Cunningham B. A., Edelman G. M. Cell surface modulation of the neural cell adhesion molecule resulting from alternative mRNA splicing in a tissue-specific developmental sequence. J Cell Biol. 1986 Oct;103(4):1431–1439. doi: 10.1083/jcb.103.4.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nagafuchi A., Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. doi: 10.1002/j.1460-2075.1988.tb03249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nose A., Nagafuchi A., Takeichi M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell. 1988 Sep 23;54(7):993–1001. doi: 10.1016/0092-8674(88)90114-6. [DOI] [PubMed] [Google Scholar]
  33. Nybroe O., Albrechtsen M., Dahlin J., Linnemann D., Lyles J. M., Møller C. J., Bock E. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C. J Cell Biol. 1985 Dec;101(6):2310–2315. doi: 10.1083/jcb.101.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ogou S. I., Yoshida-Noro C., Takeichi M. Calcium-dependent cell-cell adhesion molecules common to hepatocytes and teratocarcinoma stem cells. J Cell Biol. 1983 Sep;97(3):944–948. doi: 10.1083/jcb.97.3.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Owens G. C., Edelman G. M., Cunningham B. A. Organization of the neural cell adhesion molecule (N-CAM) gene: alternative exon usage as the basis for different membrane-associated domains. Proc Natl Acad Sci U S A. 1987 Jan;84(1):294–298. doi: 10.1073/pnas.84.1.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pizzey J. A., Jones G. E. Adhesive interactions between normal and dystrophic human skin fibroblasts. J Neurol Sci. 1985 Jul;69(3):207–221. doi: 10.1016/0022-510x(85)90134-0. [DOI] [PubMed] [Google Scholar]
  37. Pizzey J. A., Jones G. E., Walsh F. S. Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts. J Cell Biol. 1988 Dec;107(6 Pt 1):2307–2317. doi: 10.1083/jcb.107.6.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Roseman S. Studies on specific intercellular adhesion. J Biochem. 1985 Mar;97(3):709–718. doi: 10.1093/oxfordjournals.jbchem.a135110. [DOI] [PubMed] [Google Scholar]
  39. Rosenberg M. D., Aufderheide K., Christianson J. In vitro enhancement of cell clumping by surface region fractions. Exp Cell Res. 1969 Oct;57(2):449–454. doi: 10.1016/0014-4827(69)90174-8. [DOI] [PubMed] [Google Scholar]
  40. Rougon G., Marshak D. R. Structural and immunological characterization of the amino-terminal domain of mammalian neural cell adhesion molecules. J Biol Chem. 1986 Mar 5;261(7):3396–3401. [PubMed] [Google Scholar]
  41. Rutishauser U., Acheson A., Hall A. K., Mann D. M., Sunshine J. The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science. 1988 Apr 1;240(4848):53–57. doi: 10.1126/science.3281256. [DOI] [PubMed] [Google Scholar]
  42. Rutishauser U., Thiery J. P., Brackenbury R., Sela B. A., Edelman G. M. Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc Natl Acad Sci U S A. 1976 Feb;73(2):577–581. doi: 10.1073/pnas.73.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sadoul R., Hirn M., Deagostini-Bazin H., Rougon G., Goridis C. Adult and embryonic mouse neural cell adhesion molecules have different binding properties. 1983 Jul 28-Aug 3Nature. 304(5924):347–349. doi: 10.1038/304347a0. [DOI] [PubMed] [Google Scholar]
  44. Santoni M. J., Barthels D., Vopper G., Boned A., Goridis C., Wille W. Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain. EMBO J. 1989 Feb;8(2):385–392. doi: 10.1002/j.1460-2075.1989.tb03389.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sieber F., Roseman S. Quantitative analysis of intercellular adhesive specificity in freshly explanted and cultured cells. J Cell Biol. 1981 Jul;90(1):55–62. doi: 10.1083/jcb.90.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Skehan P. The mechanisms of glutaraldehyde-fixed sarcoma 180 ascites cell aggregation. J Membr Biol. 1975 Oct 16;24(1):87–106. doi: 10.1007/BF01868617. [DOI] [PubMed] [Google Scholar]
  47. Small S. J., Haines S. L., Akeson R. A. Polypeptide variation in an N-CAM extracellular immunoglobulin-like fold is developmentally regulated through alternative splicing. Neuron. 1988 Dec;1(10):1007–1017. doi: 10.1016/0896-6273(88)90158-4. [DOI] [PubMed] [Google Scholar]
  48. Thomas W. A., Thomson J., Magnani J. L., Steinberg M. S. Two distinct adhesion mechanisms in embryonic neural retina cells. III. Functional specificity. Dev Biol. 1981 Jan 30;81(2):379–385. doi: 10.1016/0012-1606(81)90304-3. [DOI] [PubMed] [Google Scholar]
  49. Thompson J., Dickson G., Moore S. E., Gower H. J., Putt W., Kenimer J. G., Barton C. H., Walsh F. S. Alternative splicing of the neural cell adhesion molecule gene generates variant extracellular domain structure in skeletal muscle and brain. Genes Dev. 1989 Mar;3(3):348–357. doi: 10.1101/gad.3.3.348. [DOI] [PubMed] [Google Scholar]
  50. Tosney K. W., Watanabe M., Landmesser L., Rutishauser U. The distribution of NCAM in the chick hindlimb during axon outgrowth and synaptogenesis. Dev Biol. 1986 Apr;114(2):437–452. doi: 10.1016/0012-1606(86)90208-3. [DOI] [PubMed] [Google Scholar]
  51. Urushihara H., Ozaki H. S., Takeichi M. Immunological detection of cell surface components related with aggregation of Chinese hamster and chick embryonic cells. Dev Biol. 1979 May;70(1):206–216. doi: 10.1016/0012-1606(79)90017-4. [DOI] [PubMed] [Google Scholar]
  52. WEISS L., LACHMANN P. J. THE ORIGIN OF AN ANTIGENIC ZONE SURROUNDING HELA CELLS CULTURED ON GLASS. Exp Cell Res. 1964 Oct;36:86–91. doi: 10.1016/0014-4827(64)90162-4. [DOI] [PubMed] [Google Scholar]
  53. Walsh F. S., Dickson G., Moore S. E., Barton C. H. Unmasking N-CAM. Nature. 1989 Jun 15;339(6225):516–516. doi: 10.1038/339516a0. [DOI] [PubMed] [Google Scholar]
  54. Walsh F. S., Parekh R. B., Moore S. E., Dickson G., Barton C. H., Gower H. J., Dwek R. A., Rademacher T. W. Tissue specific O-linked glycosylation of the neural cell adhesion molecule (N-CAM). Development. 1989 Apr;105(4):803–811. doi: 10.1242/dev.105.4.803. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES