Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Feb 1;124(3):223–233. doi: 10.1083/jcb.124.3.223

Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle

PMCID: PMC2119939  PMID: 8294508

Abstract

We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander S. P., Rieder C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J Cell Biol. 1991 May;113(4):805–815. doi: 10.1083/jcb.113.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ault J. G., DeMarco A. J., Salmon E. D., Rieder C. L. Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes. J Cell Sci. 1991 Aug;99(Pt 4):701–710. doi: 10.1242/jcs.99.4.701. [DOI] [PubMed] [Google Scholar]
  3. Ault J. G., Rieder C. L. Chromosome mal-orientation and reorientation during mitosis. Cell Motil Cytoskeleton. 1992;22(3):155–159. doi: 10.1002/cm.970220302. [DOI] [PubMed] [Google Scholar]
  4. Ault J. G. Stable versus unstable orientations of sex chromosomes in two grasshopper species. Chromosoma. 1986;93(4):298–304. doi: 10.1007/BF00327587. [DOI] [PubMed] [Google Scholar]
  5. Bajer A. S., Cypher C., Molè-Bajer J., Howard H. M. Taxol-induced anaphase reversal: evidence that elongating microtubules can exert a pushing force in living cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6569–6573. doi: 10.1073/pnas.79.21.6569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brinkley B. R., Zinkowski R. P., Mollon W. L., Davis F. M., Pisegna M. A., Pershouse M., Rao P. N. Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature. 1988 Nov 17;336(6196):251–254. doi: 10.1038/336251a0. [DOI] [PubMed] [Google Scholar]
  7. Cassimeris L., Salmon E. D. Kinetochore microtubules shorten by loss of subunits at the kinetochores of prometaphase chromosomes. J Cell Sci. 1991 Feb;98(Pt 2):151–158. doi: 10.1242/jcs.98.2.151. [DOI] [PubMed] [Google Scholar]
  8. Centonze V. E., Borisy G. G. Pole-to-chromosome movements induced at metaphase: sites of microtubule disassembly. J Cell Sci. 1991 Sep;100(Pt 1):205–211. doi: 10.1242/jcs.100.1.205. [DOI] [PubMed] [Google Scholar]
  9. Cooke C. A., Bazett-Jones D. P., Earnshaw W. C., Rattner J. B. Mapping DNA within the mammalian kinetochore. J Cell Biol. 1993 Mar;120(5):1083–1091. doi: 10.1083/jcb.120.5.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coue M., Lombillo V. A., McIntosh J. R. Microtubule depolymerization promotes particle and chromosome movement in vitro. J Cell Biol. 1991 Mar;112(6):1165–1175. doi: 10.1083/jcb.112.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Czaban B. B., Forer A., Bajer A. S. Ultraviolet microbeam irradiation of chromosomal spindle fibres in Haemanthus katherinae endosperm. I. Behaviour of the irradiated region. J Cell Sci. 1993 Jun;105(Pt 2):571–578. doi: 10.1242/jcs.105.2.571. [DOI] [PubMed] [Google Scholar]
  12. Earnshaw W. C., Bernat R. L., Cooke C. A., Rothfield N. F. Role of the centromere/kinetochore in cell cycle control. Cold Spring Harb Symp Quant Biol. 1991;56:675–685. doi: 10.1101/sqb.1991.056.01.076. [DOI] [PubMed] [Google Scholar]
  13. Erickson H. P., O'Brien E. T. Microtubule dynamic instability and GTP hydrolysis. Annu Rev Biophys Biomol Struct. 1992;21:145–166. doi: 10.1146/annurev.bb.21.060192.001045. [DOI] [PubMed] [Google Scholar]
  14. FORER A. LOCAL REDUCTION OF SPINDLE FIBER BIREFRINGENCE IN LIVING NEPHROTOMA SUTURALIS (LOEW) SPERMATOCYTES INDUCED BY ULTRAVIOLET MICROBEAM IRRADIATION. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL117. doi: 10.1083/jcb.25.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Forer A. Do anaphase chromosomes chew their way to the pole or are they pulled by actin? J Cell Sci. 1988 Dec;91(Pt 4):449–453. doi: 10.1242/jcs.91.4.449. [DOI] [PubMed] [Google Scholar]
  16. Fuge H. Traction fibres in chromosome movement: the pros and cons. Biol Cell. 1989;66(3):209–213. [PubMed] [Google Scholar]
  17. Fuseler J. W. Temperature dependence of anaphase chromosome velocity and microtubule depolymerization. J Cell Biol. 1975 Dec;67(3):789–800. doi: 10.1083/jcb.67.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gorbsky G. J., Sammak P. J., Borisy G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. doi: 10.1083/jcb.104.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hays T. S., Salmon E. D. Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules. J Cell Biol. 1990 Feb;110(2):391–404. doi: 10.1083/jcb.110.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hays T. S., Wise D., Salmon E. D. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J Cell Biol. 1982 May;93(2):374–389. doi: 10.1083/jcb.93.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holloway S. L., Glotzer M., King R. W., Murray A. W. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell. 1993 Jul 2;73(7):1393–1402. doi: 10.1016/0092-8674(93)90364-v. [DOI] [PubMed] [Google Scholar]
  22. Hyman A. A., Mitchison T. J. Regulation of the direction of chromosome movement. Cold Spring Harb Symp Quant Biol. 1991;56:745–750. doi: 10.1101/sqb.1991.056.01.083. [DOI] [PubMed] [Google Scholar]
  23. Hyman A. A., Mitchison T. J. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature. 1991 May 16;351(6323):206–211. doi: 10.1038/351206a0. [DOI] [PubMed] [Google Scholar]
  24. Inoué S. Cell division and the mitotic spindle. J Cell Biol. 1981 Dec;91(3 Pt 2):131s–147s. doi: 10.1083/jcb.91.3.131s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kalt A., Schliwa M. Molecular components of the centrosome. Trends Cell Biol. 1993 Apr;3(4):118–128. doi: 10.1016/0962-8924(93)90174-y. [DOI] [PubMed] [Google Scholar]
  26. Koshland D. E., Mitchison T. J., Kirschner M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature. 1988 Feb 11;331(6156):499–504. doi: 10.1038/331499a0. [DOI] [PubMed] [Google Scholar]
  27. Kuriyama R., Nislow C. Molecular components of the mitotic spindle. Bioessays. 1992 Feb;14(2):81–88. doi: 10.1002/bies.950140203. [DOI] [PubMed] [Google Scholar]
  28. Leslie R. J. Chromosomes attain a metaphase position on half-spindles in the absence of an opposing spindle pole. J Cell Sci. 1992 Sep;103(Pt 1):125–130. doi: 10.1242/jcs.103.1.125. [DOI] [PubMed] [Google Scholar]
  29. Luykx P. Cellular mechanisms of chromosome distribution. Int Rev Cytol. 1970;(Suppl):1–173. [PubMed] [Google Scholar]
  30. Margolis R. L., Wilson L. Microtubule treadmills--possible molecular machinery. Nature. 1981 Oct 29;293(5835):705–711. doi: 10.1038/293705a0. [DOI] [PubMed] [Google Scholar]
  31. McEwen B. F., Arena J. T., Frank J., Rieder C. L. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography. J Cell Biol. 1993 Jan;120(2):301–312. doi: 10.1083/jcb.120.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McIntosh J. R., Koonce M. P. Mitosis. Science. 1989 Nov 3;246(4930):622–628. doi: 10.1126/science.2683078. [DOI] [PubMed] [Google Scholar]
  33. McIntosh J. R., Pfarr C. M. Mitotic motors. J Cell Biol. 1991 Nov;115(3):577–585. doi: 10.1083/jcb.115.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McNeill P. A., Berns M. W. Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells. J Cell Biol. 1981 Mar;88(3):543–553. doi: 10.1083/jcb.88.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mitchison T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol. 1989 Aug;109(2):637–652. doi: 10.1083/jcb.109.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mitchison T. J., Salmon E. D. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Cell Biol. 1992 Nov;119(3):569–582. doi: 10.1083/jcb.119.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
  38. Nicklas R. B., Koch C. A. Chromosome micromanipulation. IV. Polarized motions within the spindle and models for mitosis. Chromosoma. 1972;39(1):1–26. doi: 10.1007/BF00320586. [DOI] [PubMed] [Google Scholar]
  39. Nicklas R. B., Kubai D. F. Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation. Chromosoma. 1985;92(4):313–324. doi: 10.1007/BF00329815. [DOI] [PubMed] [Google Scholar]
  40. Nicklas R. B. The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J Cell Biol. 1989 Nov;109(5):2245–2255. doi: 10.1083/jcb.109.5.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rieder C. L., Davison E. A., Jensen L. C., Cassimeris L., Salmon E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J Cell Biol. 1986 Aug;103(2):581–591. doi: 10.1083/jcb.103.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rieder C. L. Formation of the astral mitotic spindle: ultrastructural basis for the centrosome-kinetochore interaction. Electron Microsc Rev. 1990;3(2):269–300. doi: 10.1016/0892-0354(90)90005-d. [DOI] [PubMed] [Google Scholar]
  43. Rieder C. L. Mitosis: towards a molecular understanding of chromosome behavior. Curr Opin Cell Biol. 1991 Feb;3(1):59–66. doi: 10.1016/0955-0674(91)90166-v. [DOI] [PubMed] [Google Scholar]
  44. Rieder C. L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol. 1982;79:1–58. doi: 10.1016/s0074-7696(08)61672-1. [DOI] [PubMed] [Google Scholar]
  45. Roos U. P. Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. Chromosoma. 1976 Mar 10;54(4):363–385. doi: 10.1007/BF00292816. [DOI] [PubMed] [Google Scholar]
  46. Sawin K. E., Endow S. A. Meiosis, mitosis and microtubule motors. Bioessays. 1993 Jun;15(6):399–407. doi: 10.1002/bies.950150606. [DOI] [PubMed] [Google Scholar]
  47. Sawin K. E., LeGuellec K., Philippe M., Mitchison T. J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature. 1992 Oct 8;359(6395):540–543. doi: 10.1038/359540a0. [DOI] [PubMed] [Google Scholar]
  48. Seto T., Kezer J., Pomerat C. M. A cinematographic study of meiosis in salamander spermatocytes in vitro. Z Zellforsch Mikrosk Anat. 1969;94(3):407–424. doi: 10.1007/BF00319185. [DOI] [PubMed] [Google Scholar]
  49. Shelden E., Wadsworth P. Microinjection of biotin-tubulin into anaphase cells induces transient elongation of kinetochore microtubules and reversal of chromosome-to-pole motion. J Cell Biol. 1992 Mar;116(6):1409–1420. doi: 10.1083/jcb.116.6.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Skibbens R. V., Skeen V. P., Salmon E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol. 1993 Aug;122(4):859–875. doi: 10.1083/jcb.122.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Spurck T. P., Stonington O. G., Snyder J. A., Pickett-Heaps J. D., Bajer A., Mole-Bajer J. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production. J Cell Biol. 1990 Oct;111(4):1505–1518. doi: 10.1083/jcb.111.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Theurkauf W. E., Hawley R. S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol. 1992 Mar;116(5):1167–1180. doi: 10.1083/jcb.116.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Vale R. D., Malik F., Brown D. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J Cell Biol. 1992 Dec;119(6):1589–1596. doi: 10.1083/jcb.119.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Verde F., Dogterom M., Stelzer E., Karsenti E., Leibler S. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol. 1992 Sep;118(5):1097–1108. doi: 10.1083/jcb.118.5.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Waters J. C., Cole R. W., Rieder C. L. The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster. J Cell Biol. 1993 Jul;122(2):361–372. doi: 10.1083/jcb.122.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wordeman L., Steuer E. R., Sheetz M. P., Mitchison T. Chemical subdomains within the kinetochore domain of isolated CHO mitotic chromosomes. J Cell Biol. 1991 Jul;114(2):285–294. doi: 10.1083/jcb.114.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yen T. J., Li G., Schaar B. T., Szilak I., Cleveland D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature. 1992 Oct 8;359(6395):536–539. doi: 10.1038/359536a0. [DOI] [PubMed] [Google Scholar]
  58. Zhang P., Knowles B. A., Goldstein L. S., Hawley R. S. A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell. 1990 Sep 21;62(6):1053–1062. doi: 10.1016/0092-8674(90)90383-p. [DOI] [PubMed] [Google Scholar]
  59. Zheng Y., Jung M. K., Oakley B. R. Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell. 1991 May 31;65(5):817–823. doi: 10.1016/0092-8674(91)90389-g. [DOI] [PubMed] [Google Scholar]
  60. Zinkowski R. P., Meyne J., Brinkley B. R. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol. 1991 Jun;113(5):1091–1110. doi: 10.1083/jcb.113.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES