Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Dec 2;127(6):1907–1921. doi: 10.1083/jcb.127.6.1907

Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry

PMCID: PMC2120291  PMID: 7806569

Abstract

A highly selective, amiloride-sensitive, epithelial sodium channel from rat colon (rENaC), composed of three homologous subunits termed alpha, beta, and gamma rENaC, has been cloned by functional expression and was proposed to mediate electrogenic sodium reabsorption in aldosterone- responsive epithelia. To determine whether rENaC could account for sodium absorption in vivo, we studied the cellular localization of the sodium channel messenger RNA subunits by in situ hybridization and their cellular and subcellular distribution by immunocytochemistry in the kidney, colon, salivary, and sweat glands of the rat. In the kidney, we show that the three subunit mRNAs are specifically co- expressed in the renal distal convoluted tubules (DCT), connecting tubules (CNT), cortical collecting ducts (CCD), and outer medullary collecting ducts (OMCD), but not in the inner medullary collecting ducts (IMCD). We demonstrate co-localization of alpha, beta, and gamma subunit proteins in the apical membrane of a majority of cells of CCD and OMCD. Our data indicate that alpha, beta, and gamma subunit mRNAs and proteins are co-expressed in the distal nephron (excepting IMCD), a localization that correlates with the previously described physiological expression of amiloride-sensitive electrogenic sodium transport. Our data, however, suggest that another sodium transport protein mediates electrogenic amiloride-sensitive sodium reabsorption in IMCD. We also localized rENaC to the surface epithelial cells of the distal colon and to the secretory ducts of the salivary gland and sweat gland, providing further evidence consistent with the hypothesis that the highly selective, amiloride-sensitive sodium channel is physiologically expressed in aldosterone-responsive cells.

Full Text

The Full Text of this article is available as a PDF (11.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benos D. J., Saccomani G., Sariban-Sohraby S. The epithelial sodium channel. Subunit number and location of the amiloride binding site. J Biol Chem. 1987 Aug 5;262(22):10613–10618. [PubMed] [Google Scholar]
  2. Bijman J., Frömter E. Direct demonstration of high transepithelial chloride-conductance in normal human sweat duct which is absent in cystic fibrosis. Pflugers Arch. 1986;407 (Suppl 2):S123–S127. doi: 10.1007/BF00584941. [DOI] [PubMed] [Google Scholar]
  3. Canessa C. M., Horisberger J. D., Rossier B. C. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 1993 Feb 4;361(6411):467–470. doi: 10.1038/361467a0. [DOI] [PubMed] [Google Scholar]
  4. Canessa C. M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J. D., Rossier B. C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463–467. doi: 10.1038/367463a0. [DOI] [PubMed] [Google Scholar]
  5. Diezi J., Michoud P., Aceves J., Giebisch G. Micropuncture study of electrolyte transport across papillary collecting duct of the rat. Am J Physiol. 1973 Mar;224(3):623–634. doi: 10.1152/ajplegacy.1973.224.3.623. [DOI] [PubMed] [Google Scholar]
  6. Dinudom A., Young J. A., Cook D. I. Amiloride-sensitive Na+ current in the granular duct cells of mouse mandibular glands. Pflugers Arch. 1993 Apr;423(1-2):164–166. doi: 10.1007/BF00374977. [DOI] [PubMed] [Google Scholar]
  7. Farman N., Oblin M. E., Lombes M., Delahaye F., Westphal H. M., Bonvalet J. P., Gasc J. M. Immunolocalization of gluco- and mineralocorticoid receptors in rabbit kidney. Am J Physiol. 1991 Feb;260(2 Pt 1):C226–C233. doi: 10.1152/ajpcell.1991.260.2.C226. [DOI] [PubMed] [Google Scholar]
  8. Geering K., Theulaz I., Verrey F., Häuptle M. T., Rossier B. C. A role for the beta-subunit in the expression of functional Na+-K+-ATPase in Xenopus oocytes. Am J Physiol. 1989 Nov;257(5 Pt 1):C851–C858. doi: 10.1152/ajpcell.1989.257.5.C851. [DOI] [PubMed] [Google Scholar]
  9. Gögelein H., Greger R. Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflugers Arch. 1986 Feb;406(2):198–203. doi: 10.1007/BF00586683. [DOI] [PubMed] [Google Scholar]
  10. Husted R. F., Laplace J. R., Stokes J. B. Enhancement of electrogenic Na+ transport across rat inner medullary collecting duct by glucocorticoid and by mineralocorticoid hormones. J Clin Invest. 1990 Aug;86(2):498–506. doi: 10.1172/JCI114736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jaisser F., Coutry N., Farman N., Binder H. J., Rossier B. C. A putative H(+)-K(+)-ATPase is selectively expressed in surface epithelial cells of rat distal colon. Am J Physiol. 1993 Oct;265(4 Pt 1):C1080–C1089. doi: 10.1152/ajpcell.1993.265.4.C1080. [DOI] [PubMed] [Google Scholar]
  12. Joris L., Krouse M. E., Hagiwara G., Bell C. L., Wine J. J. Patch-clamp study of cultured human sweat duct cells: amiloride-blockable Na+ channel. Pflugers Arch. 1989 Jul;414(3):369–372. doi: 10.1007/BF00584641. [DOI] [PubMed] [Google Scholar]
  13. Knauf H., Lubcke R., Kreutz W., Sachs G. Interrelationships of ion transport in rat submaxillary duct epithelium. Am J Physiol. 1982 Feb;242(2):F132–F139. doi: 10.1152/ajprenal.1982.242.2.F132. [DOI] [PubMed] [Google Scholar]
  14. Krouse M. E., Hagiwara G., Chen J., Lewiston N. J., Wine J. J. Ion channels in normal human and cystic fibrosis sweat gland cells. Am J Physiol. 1989 Jul;257(1 Pt 1):C129–C140. doi: 10.1152/ajpcell.1989.257.1.C129. [DOI] [PubMed] [Google Scholar]
  15. Köckerling A., Sorgenfrei D., Fromm M. Electrogenic Na+ absorption of rat distal colon is confined to surface epithelium: a voltage-scanning study. Am J Physiol. 1993 May;264(5 Pt 1):C1285–C1293. doi: 10.1152/ajpcell.1993.264.5.C1285. [DOI] [PubMed] [Google Scholar]
  16. Light D. B., McCann F. V., Keller T. M., Stanton B. A. Amiloride-sensitive cation channel in apical membrane of inner medullary collecting duct. Am J Physiol. 1988 Aug;255(2 Pt 2):F278–F286. doi: 10.1152/ajprenal.1988.255.2.F278. [DOI] [PubMed] [Google Scholar]
  17. Light D. B., Schwiebert E. M., Karlson K. H., Stanton B. A. Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science. 1989 Jan 20;243(4889):383–385. doi: 10.1126/science.2463673. [DOI] [PubMed] [Google Scholar]
  18. Lingueglia E., Renard S., Voilley N., Waldmann R., Chassande O., Lazdunski M., Barbry P. Molecular cloning and functional expression of different molecular forms of rat amiloride-binding proteins. Eur J Biochem. 1993 Sep 1;216(2):679–687. doi: 10.1111/j.1432-1033.1993.tb18188.x. [DOI] [PubMed] [Google Scholar]
  19. Lomax R. B., McNicholas C. M., Lombès M., Sandle G. I. Aldosterone-induced apical Na+ and K+ conductances are located predominantly in surface cells in rat distal colon. Am J Physiol. 1994 Jan;266(1 Pt 1):G71–G82. doi: 10.1152/ajpgi.1994.266.1.G71. [DOI] [PubMed] [Google Scholar]
  20. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  21. Palmer L. G. Epithelial Na channels: function and diversity. Annu Rev Physiol. 1992;54:51–66. doi: 10.1146/annurev.ph.54.030192.000411. [DOI] [PubMed] [Google Scholar]
  22. Palmer L. G. Ion selectivity of epithelial Na channels. J Membr Biol. 1987;96(2):97–106. doi: 10.1007/BF01869236. [DOI] [PubMed] [Google Scholar]
  23. Pácha J., Frindt G., Antonian L., Silver R. B., Palmer L. G. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol. 1993 Jul;102(1):25–42. doi: 10.1085/jgp.102.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Quinton P. M. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 1990 Jul;4(10):2709–2717. doi: 10.1096/fasebj.4.10.2197151. [DOI] [PubMed] [Google Scholar]
  25. Rajendran V. M., Kashgarian M., Binder H. J. Aldosterone induction of electrogenic sodium transport in the apical membrane vesicles of rat distal colon. J Biol Chem. 1989 Nov 5;264(31):18638–18644. [PubMed] [Google Scholar]
  26. Rotin D., Bar-Sagi D., O'Brodovich H., Merilainen J., Lehto V. P., Canessa C. M., Rossier B. C., Downey G. P. An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J. 1994 Oct 3;13(19):4440–4450. doi: 10.1002/j.1460-2075.1994.tb06766.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schuster V. L. Function and regulation of collecting duct intercalated cells. Annu Rev Physiol. 1993;55:267–288. doi: 10.1146/annurev.ph.55.030193.001411. [DOI] [PubMed] [Google Scholar]
  28. Stokes J. B. Ion transport by the collecting duct. Semin Nephrol. 1993 Mar;13(2):202–212. [PubMed] [Google Scholar]
  29. Strong T. V., Boehm K., Collins F. S. Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest. 1994 Jan;93(1):347–354. doi: 10.1172/JCI116966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Voilley N., Lingueglia E., Champigny G., Mattéi M. G., Waldmann R., Lazdunski M., Barbry P. The lung amiloride-sensitive Na+ channel: biophysical properties, pharmacology, ontogenesis, and molecular cloning. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):247–251. doi: 10.1073/pnas.91.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wills N. K., Zeiske W., Van Driessche W. Noise analysis reveals K+ channel conductance fluctuations in the apical membrane of rabbit colon. J Membr Biol. 1982;69(3):187–197. doi: 10.1007/BF01870398. [DOI] [PubMed] [Google Scholar]
  32. Wingo C. S., Cain B. D. The renal H-K-ATPase: physiological significance and role in potassium homeostasis. Annu Rev Physiol. 1993;55:323–347. doi: 10.1146/annurev.ph.55.030193.001543. [DOI] [PubMed] [Google Scholar]
  33. Zeiske W., Wills N. K., Van Driessche W. Na+ channels and amiloride-induced noise in the mammalian colon epithelium. Biochim Biophys Acta. 1982 May 21;688(1):201–210. doi: 10.1016/0005-2736(82)90595-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES