Abstract
Traction forces produced by moving fibroblasts have been observed as distortions in flexible substrata including wrinkling of thin, silicone rubber films. Traction forces generated by fibroblast lamellae were thought to represent the forces required to move the cell forwards. However, traction forces could not be detected with faster moving cell types such as leukocytes and growth cones (Harris, A. K., D. Stopak, and P. Wild. 1981. Nature (Lond.). 290:249-251). We have developed a new assay in which traction forces produced by rapidly locomoting fish keratocytes can be detected by the two-dimensional displacements of small beads embedded in the plane of an elastic substratum. Traction forces were not detected at the rapidly extending front edge of the cell. Instead the largest traction forces were exerted perpendicular to the left and right cell margins. The maximum traction forces exerted by keratocytes were estimated to be approximately 2 x 10(-8) N. The pattern of traction forces can be related to the locomotion of a single keratocyte in terms of lamellar contractility and area of close cell- substratum contact.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bereiter-Hahn J., Strohmeier R., Kunzenbacher I., Beck K., Vöth M. Locomotion of Xenopus epidermis cells in primary culture. J Cell Sci. 1981 Dec;52:289–311. doi: 10.1242/jcs.52.1.289. [DOI] [PubMed] [Google Scholar]
- Chen W. T. Induction of spreading during fibroblast movement. J Cell Biol. 1979 Jun;81(3):684–691. doi: 10.1083/jcb.81.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couchman J. R., Rees D. A. The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J Cell Sci. 1979 Oct;39:149–165. doi: 10.1242/jcs.39.1.149. [DOI] [PubMed] [Google Scholar]
- Evans E., Leung A., Zhelev D. Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens. J Cell Biol. 1993 Sep;122(6):1295–1300. doi: 10.1083/jcb.122.6.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E. New physical concepts for cell amoeboid motion. Biophys J. 1993 Apr;64(4):1306–1322. doi: 10.1016/S0006-3495(93)81497-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris A. K., Stopak D., Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981 Mar 19;290(5803):249–251. doi: 10.1038/290249a0. [DOI] [PubMed] [Google Scholar]
- Harris A. K., Wild P., Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science. 1980 Apr 11;208(4440):177–179. doi: 10.1126/science.6987736. [DOI] [PubMed] [Google Scholar]
- Heath J., Holifield B. Cell locomotion. Actin alone in lamellipodia. Nature. 1991 Jul 11;352(6331):107–108. doi: 10.1038/352107a0. [DOI] [PubMed] [Google Scholar]
- Heidemann S. R., Lamoureux P., Buxbaum R. E. Growth cone behavior and production of traction force. J Cell Biol. 1990 Nov;111(5 Pt 1):1949–1957. doi: 10.1083/jcb.111.5.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izzard C. S., Lochner L. R. Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. J Cell Sci. 1980 Apr;42:81–116. doi: 10.1242/jcs.42.1.81. [DOI] [PubMed] [Google Scholar]
- Kolega J. Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol. 1986 Apr;102(4):1400–1411. doi: 10.1083/jcb.102.4.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J., Ishihara A., Theriot J. A., Jacobson K. Principles of locomotion for simple-shaped cells. Nature. 1993 Mar 11;362(6416):167–171. doi: 10.1038/362167a0. [DOI] [PubMed] [Google Scholar]
- Oliver T., Lee J., Jacobson K. Forces exerted by locomoting cells. Semin Cell Biol. 1994 Jun;5(3):139–147. doi: 10.1006/scel.1994.1018. [DOI] [PubMed] [Google Scholar]
- Theriot J. A., Mitchison T. J. Actin microfilament dynamics in locomoting cells. Nature. 1991 Jul 11;352(6331):126–131. doi: 10.1038/352126a0. [DOI] [PubMed] [Google Scholar]
- Theriot J. A., Mitchison T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J Cell Biol. 1992 Oct;119(2):367–377. doi: 10.1083/jcb.119.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]