Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Dec 2;131(6):1495–1506. doi: 10.1083/jcb.131.6.1495

Ponticulin plays a role in the positional stabilization of pseudopods

PMCID: PMC2120683  PMID: 8522606

Abstract

Ponticulin is a 17-kD glycoprotein that represents a major high affinity link between the plasma membrane and the cortical actin network of Dictyostelium. To assess the role of ponticulin in pseudopod extension and retraction, the motile behavior of two independently generated mutants lacking ponticulin was analyzed using computer- assisted two- and three-dimensional motion analysis systems. More than half of the lateral pseudopods formed off the substratum by ponticulin- minus cells slipped relative to the substratum during extension and retraction. In contrast, all pseudopods formed off the substratum by wild-type cells were positionally fixed in relation to the substratum. Ponticulin-minus cells also formed a greater proportion of both anterior and lateral pseudopods off the substratum and absorbed a greater proportion of lateral pseudopods into the uropod than wild-type cells. In a spatial gradient of cAMP, ponticulin-minus cells were less efficient in tracking the source of chemoattractant. Since ponticulin- minus cells extend and retract pseudopods with the same time course as wild-type cells, these behavioral defects in ponticulin-minus cells appear to be the consequence of pseudopod slippage. These results demonstrate that pseudopods formed off the substratum by wild-type cells are positionally fixed in relation to the substratum, that ponticulin is required for positional stabilization, and that the loss of ponticulin and the concomitant loss of positional stability of pseudopods correlate with a decrease in the efficiency of chemotaxis.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res. 1970 Mar;59(3):393–398. doi: 10.1016/0014-4827(70)90646-4. [DOI] [PubMed] [Google Scholar]
  2. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. II. "RRuffling". Exp Cell Res. 1970 Jun;60(3):437–444. doi: 10.1016/0014-4827(70)90537-9. [DOI] [PubMed] [Google Scholar]
  3. Alexander S., Sydow L. M., Wessels D., Soll D. R. Discoidin proteins of Dictyostelium are necessary for normal cytoskeletal organization and cellular morphology during aggregation. Differentiation. 1992 Nov;51(3):149–161. doi: 10.1111/j.1432-0436.1992.tb00691.x. [DOI] [PubMed] [Google Scholar]
  4. Bray D., White J. G. Cortical flow in animal cells. Science. 1988 Feb 19;239(4842):883–888. doi: 10.1126/science.3277283. [DOI] [PubMed] [Google Scholar]
  5. Caterina M. J., Devreotes P. N. Molecular insights into eukaryotic chemotaxis. FASEB J. 1991 Dec;5(15):3078–3085. [PubMed] [Google Scholar]
  6. Chandrasekhar A., Wessels D., Soll D. R. A mutation that depresses cGMP phosphodiesterase activity in Dictyostelium affects cell motility through an altered chemotactic signal. Dev Biol. 1995 May;169(1):109–122. doi: 10.1006/dbio.1995.1131. [DOI] [PubMed] [Google Scholar]
  7. Chia C. P., Hitt A. L., Luna E. J. Direct binding of F-actin to ponticulin, an integral plasma membrane glycoprotein. Cell Motil Cytoskeleton. 1991;18(3):164–179. doi: 10.1002/cm.970180303. [DOI] [PubMed] [Google Scholar]
  8. Cocucci S. M., Sussman M. RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J Cell Biol. 1970 May;45(2):399–407. doi: 10.1083/jcb.45.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Condeelis J., Jones J., Segall J. E. Chemotaxis of metastatic tumor cells: clues to mechanisms from the Dictyostelium paradigm. Cancer Metastasis Rev. 1992 Mar;11(1):55–68. doi: 10.1007/BF00047603. [DOI] [PubMed] [Google Scholar]
  10. Condeelis J. Life at the leading edge: the formation of cell protrusions. Annu Rev Cell Biol. 1993;9:411–444. doi: 10.1146/annurev.cb.09.110193.002211. [DOI] [PubMed] [Google Scholar]
  11. Cox D., Condeelis J., Wessels D., Soll D., Kern H., Knecht D. A. Targeted disruption of the ABP-120 gene leads to cells with altered motility. J Cell Biol. 1992 Feb;116(4):943–955. doi: 10.1083/jcb.116.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Lozanne A., Spudich J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science. 1987 May 29;236(4805):1086–1091. doi: 10.1126/science.3576222. [DOI] [PubMed] [Google Scholar]
  13. Doolittle K. W., Reddy I., McNally J. G. 3D analysis of cell movement during normal and myosin-II-null cell morphogenesis in dictyostelium. Dev Biol. 1995 Jan;167(1):118–129. doi: 10.1006/dbio.1995.1011. [DOI] [PubMed] [Google Scholar]
  14. Downey G. P. Mechanisms of leukocyte motility and chemotaxis. Curr Opin Immunol. 1994 Feb;6(1):113–124. doi: 10.1016/0952-7915(94)90042-6. [DOI] [PubMed] [Google Scholar]
  15. Hitt A. L., Hartwig J. H., Luna E. J. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium. J Cell Biol. 1994 Sep;126(6):1433–1444. doi: 10.1083/jcb.126.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hitt A. L., Lu T. H., Luna E. J. Ponticulin is an atypical membrane protein. J Cell Biol. 1994 Sep;126(6):1421–1431. doi: 10.1083/jcb.126.6.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jay P. Y., Elson E. L. Surface particle transport mechanism independent of myosin II in Dictyostelium. Nature. 1992 Apr 2;356(6368):438–440. doi: 10.1038/356438a0. [DOI] [PubMed] [Google Scholar]
  18. Knecht D. A., Loomis W. F. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science. 1987 May 29;236(4805):1081–1086. doi: 10.1126/science.3576221. [DOI] [PubMed] [Google Scholar]
  19. Luna E. J., Hitt A. L. Cytoskeleton--plasma membrane interactions. Science. 1992 Nov 6;258(5084):955–964. doi: 10.1126/science.1439807. [DOI] [PubMed] [Google Scholar]
  20. Luna E. J., Wuestehube L. J., Chia C. P., Shariff A., Hitt A. L., Ingalls H. M. Ponticulin, a developmentally-regulated plasma membrane glycoprotein, mediates actin binding and nucleation. Dev Genet. 1990;11(5-6):354–361. doi: 10.1002/dvg.1020110506. [DOI] [PubMed] [Google Scholar]
  21. Murray J., Vawter-Hugart H., Voss E., Soll D. R. Three-dimensional motility cycle in leukocytes. Cell Motil Cytoskeleton. 1992;22(3):211–223. doi: 10.1002/cm.970220308. [DOI] [PubMed] [Google Scholar]
  22. Pasternak C., Spudich J. A., Elson E. L. Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature. 1989 Oct 12;341(6242):549–551. doi: 10.1038/341549a0. [DOI] [PubMed] [Google Scholar]
  23. Schindl M., Wallraff E., Deubzer B., Witke W., Gerisch G., Sackmann E. Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy. Biophys J. 1995 Mar;68(3):1177–1190. doi: 10.1016/S0006-3495(95)80294-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shariff A., Luna E. J. Dictyostelium discoideum plasma membranes contain an actin-nucleating activity that requires ponticulin, an integral membrane glycoprotein. J Cell Biol. 1990 Mar;110(3):681–692. doi: 10.1083/jcb.110.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sheetz M. P. Cellular plasma membrane domains. Mol Membr Biol. 1995 Jan-Mar;12(1):89–91. doi: 10.3109/09687689509038501. [DOI] [PubMed] [Google Scholar]
  26. Soll D. R., Voss E., Varnum-Finney B., Wessels D. "Dynamic Morphology System": a method for quantitating changes in shape, pseudopod formation, and motion in normal and mutant amoebae of Dictyostelium discoideum. J Cell Biochem. 1988 Jun;37(2):177–192. doi: 10.1002/jcb.240370205. [DOI] [PubMed] [Google Scholar]
  27. Sylwester A., Shutt D., Wessels D., Stapleton J. T., Stites J., Kennedy R. C., Soll D. R. T cells and HIV-induced T cell syncytia exhibit the same motility cycle. J Leukoc Biol. 1995 Apr;57(4):643–650. doi: 10.1002/jlb.57.4.643. [DOI] [PubMed] [Google Scholar]
  28. Sylwester A., Wessels D., Anderson S. A., Warren R. Q., Shutt D. C., Kennedy R. C., Soll D. R. HIV-induced syncytia of a T cell line form single giant pseudopods and are motile. J Cell Sci. 1993 Nov;106(Pt 3):941–953. doi: 10.1242/jcs.106.3.941. [DOI] [PubMed] [Google Scholar]
  29. Titus M. A., Wessels D., Spudich J. A., Soll D. The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility. Mol Biol Cell. 1993 Feb;4(2):233–246. doi: 10.1091/mbc.4.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Varnum-Finney B. J., Voss E., Soll D. R. Frequency and orientation of pseudopod formation of Dictyostelium discoideum amebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism. Cell Motil Cytoskeleton. 1987;8(1):18–26. doi: 10.1002/cm.970080104. [DOI] [PubMed] [Google Scholar]
  31. Varnum-Finney B., Edwards K. B., Voss E., Soll D. R. Amebae of Dictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in ameboid chemotaxis. Cell Motil Cytoskeleton. 1987;8(1):7–17. doi: 10.1002/cm.970080103. [DOI] [PubMed] [Google Scholar]
  32. Varnum B., Edwards K. B., Soll D. R. The developmental regulation of single-cell motility in Dictyostelium discoideum. Dev Biol. 1986 Jan;113(1):218–227. doi: 10.1016/0012-1606(86)90124-7. [DOI] [PubMed] [Google Scholar]
  33. Varnum B., Soll D. R. Effects of cAMP on single cell motility in Dictyostelium. J Cell Biol. 1984 Sep;99(3):1151–1155. doi: 10.1083/jcb.99.3.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wessels D., Murray J., Jung G., Hammer J. A., 3rd, Soll D. R. Myosin IB null mutants of Dictyostelium exhibit abnormalities in motility. Cell Motil Cytoskeleton. 1991;20(4):301–315. doi: 10.1002/cm.970200406. [DOI] [PubMed] [Google Scholar]
  35. Wessels D., Murray J., Soll D. R. Behavior of Dictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave. Cell Motil Cytoskeleton. 1992;23(2):145–156. doi: 10.1002/cm.970230207. [DOI] [PubMed] [Google Scholar]
  36. Wessels D., Schroeder N. A., Voss E., Hall A. L., Condeelis J., Soll D. R. cAMP-mediated inhibition of intracellular particle movement and actin reorganization in Dictyostelium. J Cell Biol. 1989 Dec;109(6 Pt 1):2841–2851. doi: 10.1083/jcb.109.6.2841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wessels D., Soll D. R., Knecht D., Loomis W. F., De Lozanne A., Spudich J. Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Dev Biol. 1988 Jul;128(1):164–177. doi: 10.1016/0012-1606(88)90279-5. [DOI] [PubMed] [Google Scholar]
  38. Wessels D., Soll D. R. Myosin II heavy chain null mutant of Dictyostelium exhibits defective intracellular particle movement. J Cell Biol. 1990 Sep;111(3):1137–1148. doi: 10.1083/jcb.111.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wessels D., Vawter-Hugart H., Murray J., Soll D. R. Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium. Cell Motil Cytoskeleton. 1994;27(1):1–12. doi: 10.1002/cm.970270102. [DOI] [PubMed] [Google Scholar]
  40. Wuestehube L. J., Chia C. P., Luna E. J. Indirect immunofluorescence localization of ponticulin in motile cells. Cell Motil Cytoskeleton. 1989;13(4):245–263. doi: 10.1002/cm.970130404. [DOI] [PubMed] [Google Scholar]
  41. Wuestehube L. J., Luna E. J. F-actin binds to the cytoplasmic surface of ponticulin, a 17-kD integral glycoprotein from Dictyostelium discoideum plasma membranes. J Cell Biol. 1987 Oct;105(4):1741–1751. doi: 10.1083/jcb.105.4.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zigmond S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977 Nov;75(2 Pt 1):606–616. doi: 10.1083/jcb.75.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES