Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Mar 2;132(6):1151–1159. doi: 10.1083/jcb.132.6.1151

Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms

PMCID: PMC2120753  PMID: 8601591

Abstract

Several FGF family members are expressed in skeletal muscle; however, the roles of these factors in skeletal muscle development are unclear. We examined the RNA expression, protein levels, and biological activities of the FGF family in the MM14 mouse skeletal muscle cell line. Proliferating skeletal muscle cells express FGF-1, FGF-2, FGF-6, and FGF-7 mRNA. Differentiated myofibers express FGF-5, FGF-7, and reduced levels of FGF-6 mRNA. FGF-3, FGF-4, and FGF-8 were not detectable by RT-PCR in either proliferating or differentiated skeletal muscle cells. FGF-I and FGF-2 proteins were present in proliferating skeletal muscle cells, but undetectable after terminal differentiation. We show that transfection of expression constructs encoding FGF-1 or FGF-2 mimics the effects of exogenously applied FGFs, inhibiting skeletal muscle cell differentiation and stimulating DNA synthesis. These effects require activation of an FGF tyrosine kinase receptor as they are blocked by transfection of a dominant negative mutant FGF receptor. Transient transfection of cells with FGF-1 or FGF-2 expression constructs exerted a global effect on myoblast DNA synthesis, as greater than 50% of the nontransfected cells responded by initiating DNA synthesis. The global effect of cultures transfected with FGF-2 expression vectors was blocked by an anti-FGF-2 monoclonal antibody, suggesting that FGF-2 was exported from the transfected cells. Despite the fact that both FGF-l and FGF-2 lack secretory signal sequences, when expressed intracellularly, they regulate skeletal muscle development. Thus, production of FGF-1 and FGF-2 by skeletal muscle cells may act as a paracrine and autocrine regulator of skeletal muscle development in vivo.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. E., Dodson M. V., Luiten L. S. Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor. Exp Cell Res. 1984 May;152(1):154–160. doi: 10.1016/0014-4827(84)90239-8. [DOI] [PubMed] [Google Scholar]
  2. Baird A., Klagsbrun M. The fibroblast growth factor family. Cancer Cells. 1991 Jun;3(6):239–243. [PubMed] [Google Scholar]
  3. Bikfalvi A., Klein S., Pintucci G., Quarto N., Mignatti P., Rifkin D. B. Differential modulation of cell phenotype by different molecular weight forms of basic fibroblast growth factor: possible intracellular signaling by the high molecular weight forms. J Cell Biol. 1995 Apr;129(1):233–243. doi: 10.1083/jcb.129.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burrus L. W., Zuber M. E., Lueddecke B. A., Olwin B. B. Identification of a cysteine-rich receptor for fibroblast growth factors. Mol Cell Biol. 1992 Dec;12(12):5600–5609. doi: 10.1128/mcb.12.12.5600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cusella-De Angelis M. G., Molinari S., Le Donne A., Coletta M., Vivarelli E., Bouche M., Molinaro M., Ferrari S., Cossu G. Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis. Development. 1994 Apr;120(4):925–933. doi: 10.1242/dev.120.4.925. [DOI] [PubMed] [Google Scholar]
  7. D'Amore P. A. Modes of FGF release in vivo and in vitro. Cancer Metastasis Rev. 1990 Nov;9(3):227–238. doi: 10.1007/BF00046362. [DOI] [PubMed] [Google Scholar]
  8. DiMario J., Strohman R. C. Satellite cells from dystrophic (mdx) mouse muscle are stimulated by fibroblast growth factor in vitro. Differentiation. 1988 Nov;39(1):42–49. doi: 10.1111/j.1432-0436.1988.tb00079.x. [DOI] [PubMed] [Google Scholar]
  9. Florkiewicz R. Z., Majack R. A., Buechler R. D., Florkiewicz E. Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J Cell Physiol. 1995 Mar;162(3):388–399. doi: 10.1002/jcp.1041620311. [DOI] [PubMed] [Google Scholar]
  10. Florkiewicz R. Z., Sommer A. Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci U S A. 1989 Jun;86(11):3978–3981. doi: 10.1073/pnas.86.11.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fox J. C., Hsu A. Y., Swain J. L. Myogenic differentiation triggered by antisense acidic fibroblast growth factor RNA. Mol Cell Biol. 1994 Jun;14(6):4244–4250. doi: 10.1128/mcb.14.6.4244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garrett K. L., Anderson J. E. Colocalization of bFGF and the myogenic regulatory gene myogenin in dystrophic mdx muscle precursors and young myotubes in vivo. Dev Biol. 1995 Jun;169(2):596–608. doi: 10.1006/dbio.1995.1172. [DOI] [PubMed] [Google Scholar]
  13. Gospodarowicz D., Weseman J., Moran J. Presence in brain of a mitogenic agent promoting proliferation of myoblasts in low density culture. Nature. 1975 Jul 17;256(5514):216–219. doi: 10.1038/256216a0. [DOI] [PubMed] [Google Scholar]
  14. Han J. K., Martin G. R. Embryonic expression of Fgf-6 is restricted to the skeletal muscle lineage. Dev Biol. 1993 Aug;158(2):549–554. doi: 10.1006/dbio.1993.1212. [DOI] [PubMed] [Google Scholar]
  15. Hannon K., Smith C. K., 2nd, Bales K. R., Santerre R. F. Temporal and quantitative analysis of myogenic regulatory and growth factor gene expression in the developing mouse embryo. Dev Biol. 1992 May;151(1):137–144. doi: 10.1016/0012-1606(92)90221-2. [DOI] [PubMed] [Google Scholar]
  16. Hébert J. M., Basilico C., Goldfarb M., Haub O., Martin G. R. Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression patterns during embryogenesis. Dev Biol. 1990 Apr;138(2):454–463. doi: 10.1016/0012-1606(90)90211-z. [DOI] [PubMed] [Google Scholar]
  17. Jackson A., Friedman S., Zhan X., Engleka K. A., Forough R., Maciag T. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10691–10695. doi: 10.1073/pnas.89.22.10691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jackson A., Tarantini F., Gamble S., Friedman S., Maciag T. The release of fibroblast growth factor-1 from NIH 3T3 cells in response to temperature involves the function of cysteine residues. J Biol Chem. 1995 Jan 6;270(1):33–36. doi: 10.1074/jbc.270.1.33. [DOI] [PubMed] [Google Scholar]
  19. Joseph-Silverstein J., Consigli S. A., Lyser K. M., Ver Pault C. Basic fibroblast growth factor in the chick embryo: immunolocalization to striated muscle cells and their precursors. J Cell Biol. 1989 Jun;108(6):2459–2466. doi: 10.1083/jcb.108.6.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kardami E., Spector D., Strohman R. C. Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8044–8047. doi: 10.1073/pnas.82.23.8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kardami E., Spector D., Strohman R. C. Selected muscle and nerve extracts contain an activity which stimulates myoblast proliferation and which is distinct from transferrin. Dev Biol. 1985 Dec;112(2):353–358. doi: 10.1016/0012-1606(85)90406-3. [DOI] [PubMed] [Google Scholar]
  22. Klagsbrun M., Edelman E. R. Biological and biochemical properties of fibroblast growth factors. Implications for the pathogenesis of atherosclerosis. Arteriosclerosis. 1989 May-Jun;9(3):269–278. doi: 10.1161/01.atv.9.3.269. [DOI] [PubMed] [Google Scholar]
  23. Kudla A. J., John M. L., Bowen-Pope D. F., Rainish B., Olwin B. B. A requirement for fibroblast growth factor in regulation of skeletal muscle growth and differentiation cannot be replaced by activation of platelet-derived growth factor signaling pathways. Mol Cell Biol. 1995 Jun;15(6):3238–3246. doi: 10.1128/mcb.15.6.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lim R. W., Hauschka S. D. EGF responsiveness and receptor regulation in normal and differentiation-defective mouse myoblasts. Dev Biol. 1984 Sep;105(1):48–58. doi: 10.1016/0012-1606(84)90260-4. [DOI] [PubMed] [Google Scholar]
  25. Linkhart T. A., Clegg C. H., Hauschika S. D. Myogenic differentiation in permanent clonal mouse myoblast cell lines: regulation by macromolecular growth factors in the culture medium. Dev Biol. 1981 Aug;86(1):19–30. doi: 10.1016/0012-1606(81)90311-0. [DOI] [PubMed] [Google Scholar]
  26. Linkhart T. A., Clegg C. H., Hauschka S. D. Control of mouse myoblast commitment to terminal differentiation by mitogens. J Supramol Struct. 1980;14(4):483–498. doi: 10.1002/jss.400140407. [DOI] [PubMed] [Google Scholar]
  27. Maciag T., Zhan X., Garfinkel S., Friedman S., Prudovsky I., Jackson A., Wessendorf J., Hu X., Gamble S., Shi J. Novel mechanisms of fibroblast growth factor 1 function. Recent Prog Horm Res. 1994;49:105–123. doi: 10.1016/b978-0-12-571149-4.50009-x. [DOI] [PubMed] [Google Scholar]
  28. McNeil P. L., Muthukrishnan L., Warder E., D'Amore P. A. Growth factors are released by mechanically wounded endothelial cells. J Cell Biol. 1989 Aug;109(2):811–822. doi: 10.1083/jcb.109.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mignatti P., Morimoto T., Rifkin D. B. Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J Cell Physiol. 1992 Apr;151(1):81–93. doi: 10.1002/jcp.1041510113. [DOI] [PubMed] [Google Scholar]
  30. Mignatti P., Rifkin D. B. Release of basic fibroblast growth factor, an angiogenic factor devoid of secretory signal sequence: a trivial phenomenon or a novel secretion mechanism? J Cell Biochem. 1991 Nov;47(3):201–207. doi: 10.1002/jcb.240470303. [DOI] [PubMed] [Google Scholar]
  31. Moore J. W., Dionne C., Jaye M., Swain J. L. The mRNAs encoding acidic FGF, basic FGF and FGF receptor are coordinately downregulated during myogenic differentiation. Development. 1991 Mar;111(3):741–748. doi: 10.1242/dev.111.3.741. [DOI] [PubMed] [Google Scholar]
  32. Muthukrishnan L., Warder E., McNeil P. L. Basic fibroblast growth factor is efficiently released from a cytolsolic storage site through plasma membrane disruptions of endothelial cells. J Cell Physiol. 1991 Jul;148(1):1–16. doi: 10.1002/jcp.1041480102. [DOI] [PubMed] [Google Scholar]
  33. Niswander L., Martin G. R. Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development. 1992 Mar;114(3):755–768. doi: 10.1242/dev.114.3.755. [DOI] [PubMed] [Google Scholar]
  34. Olwin B. B., Hannon K., Kudla A. J. Are fibroblast growth factors regulators of myogenesis in vivo? Prog Growth Factor Res. 1994;5(2):145–158. doi: 10.1016/0955-2235(94)90002-7. [DOI] [PubMed] [Google Scholar]
  35. Olwin B. B., Hauschka S. D. Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture. J Cell Biol. 1988 Aug;107(2):761–769. doi: 10.1083/jcb.107.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Olwin B. B., Hauschka S. D. Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts. Biochemistry. 1986 Jun 17;25(12):3487–3492. doi: 10.1021/bi00360a001. [DOI] [PubMed] [Google Scholar]
  37. Orr-Urtreger A., Givol D., Yayon A., Yarden Y., Lonai P. Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development. 1991 Dec;113(4):1419–1434. doi: 10.1242/dev.113.4.1419. [DOI] [PubMed] [Google Scholar]
  38. Patrie K. M., Kudla A. J., Olwin B. B., Chiu I. M. Conservation of ligand specificity between the mammalian and amphibian fibroblast growth factor receptors. J Biol Chem. 1995 Dec 1;270(48):29018–29024. doi: 10.1074/jbc.270.48.29018. [DOI] [PubMed] [Google Scholar]
  39. Peters K. G., Werner S., Chen G., Williams L. T. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development. 1992 Jan;114(1):233–243. doi: 10.1242/dev.114.1.233. [DOI] [PubMed] [Google Scholar]
  40. Prats H., Kaghad M., Prats A. C., Klagsbrun M., Lélias J. M., Liauzun P., Chalon P., Tauber J. P., Amalric F., Smith J. A. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1836–1840. doi: 10.1073/pnas.86.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rando T. A., Blau H. M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol. 1994 Jun;125(6):1275–1287. doi: 10.1083/jcb.125.6.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rapraeger A. C., Guimond S., Krufka A., Olwin B. B. Regulation by heparan sulfate in fibroblast growth factor signaling. Methods Enzymol. 1994;245:219–240. doi: 10.1016/0076-6879(94)45013-7. [DOI] [PubMed] [Google Scholar]
  43. Renko M., Quarto N., Morimoto T., Rifkin D. B. Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol. 1990 Jul;144(1):108–114. doi: 10.1002/jcp.1041440114. [DOI] [PubMed] [Google Scholar]
  44. Rogelj S., Weinberg R. A., Fanning P., Klagsbrun M. Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature. 1988 Jan 14;331(6152):173–175. doi: 10.1038/331173a0. [DOI] [PubMed] [Google Scholar]
  45. Savage M. P., Fallon J. F. FGF-2 mRNA and its antisense message are expressed in a developmentally specific manner in the chick limb bud and mesonephros. Dev Dyn. 1995 Apr;202(4):343–353. doi: 10.1002/aja.1002020404. [DOI] [PubMed] [Google Scholar]
  46. Savage M. P., Hart C. E., Riley B. B., Sasse J., Olwin B. B., Fallon J. F. Distribution of FGF-2 suggests it has a role in chick limb bud growth. Dev Dyn. 1993 Nov;198(3):159–170. doi: 10.1002/aja.1001980302. [DOI] [PubMed] [Google Scholar]
  47. Seed J., Hauschka S. D. Clonal analysis of vertebrate myogenesis. VIII. Fibroblasts growth factor (FGF)-dependent and FGF-independent muscle colony types during chick wing development. Dev Biol. 1988 Jul;128(1):40–49. doi: 10.1016/0012-1606(88)90264-3. [DOI] [PubMed] [Google Scholar]
  48. Templeton T. J., Hauschka S. D. FGF-mediated aspects of skeletal muscle growth and differentiation are controlled by a high affinity receptor, FGFR1. Dev Biol. 1992 Nov;154(1):169–181. doi: 10.1016/0012-1606(92)90057-n. [DOI] [PubMed] [Google Scholar]
  49. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]
  50. deLapeyrière O., Ollendorff V., Planche J., Ott M. O., Pizette S., Coulier F., Birnbaum D. Expression of the Fgf6 gene is restricted to developing skeletal muscle in the mouse embryo. Development. 1993 Jun;118(2):601–611. doi: 10.1242/dev.118.2.601. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES