Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Mar 2;132(6):1093–1104. doi: 10.1083/jcb.132.6.1093

The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase

PMCID: PMC2120764  PMID: 8601587

Abstract

The force for poleward chromosome motion during mitosis is thought to act, in all higher organisms, exclusively through the kinetochore. We have used time-lapse. video-enhanced, differential interference contrast light microscopy to determine the behavior of kinetochore-free "acentric" chromosome fragments and "monocentric" chromosomes containing one kinetochore, created at various stages of mitosis in living higher plant (Haemanthus) cells by laser microsurgery. Acentric fragments and monocentric chromosomes generated during spindle formation and metaphase both moved towards the closest spindle pole at a rate (approximately 1.0 microm/min) similar to the poleward motion of anaphase chromosomes. This poleward transport of chromosome fragments ceased near the onset of anaphase and was replaced. near midanaphase, by another force that now transported the fragments to the spindle equator at 1.5-2.0 microm/min. These fragments then remained near the spindle midzone until phragmoplast development, at which time they were again transported randomly poleward but now at approximately 3 microm/min. This behavior of acentric chromosome fragments on anastral plant spindles differs from that reported for the astral spindles of vertebrate cells, and demonstrates that in forming plant spindles, a force for poleward chromosome motion is generated independent of the kinetochore. The data further suggest that the three stages of non- kinetochore chromosome transport we observed are all mediated by the spindle microtubules. Finally, our findings reveal that there are fundamental differences between the transport properties of forming mitotic spindles in plants and vertebrates.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afshar K., Barton N. R., Hawley R. S., Goldstein L. S. DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell. 1995 Apr 7;81(1):129–138. doi: 10.1016/0092-8674(95)90377-1. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D., Travis J. L., Hayden J. H., Allen N. S., Breuer A. C., Lewis L. J. Cytoplasmic transport: moving ultrastructural elements common to many cell types revealed by video-enhanced microscopy. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):85–87. doi: 10.1101/sqb.1982.046.01.012. [DOI] [PubMed] [Google Scholar]
  3. Asada T., Shibaoka H. Isolation of polypeptides with microtubule-translocating activity from phragmoplasts of tobacco BY-2 cells. J Cell Sci. 1994 Aug;107(Pt 8):2249–2257. doi: 10.1242/jcs.107.8.2249. [DOI] [PubMed] [Google Scholar]
  4. Ault J. G., DeMarco A. J., Salmon E. D., Rieder C. L. Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes. J Cell Sci. 1991 Aug;99(Pt 4):701–710. doi: 10.1242/jcs.99.4.701. [DOI] [PubMed] [Google Scholar]
  5. Ault J. G., Rieder C. L. Centrosome and kinetochore movement during mitosis. Curr Opin Cell Biol. 1994 Feb;6(1):41–49. doi: 10.1016/0955-0674(94)90114-7. [DOI] [PubMed] [Google Scholar]
  6. BAJER A. Cine-micrographic studies on chromosome movements in beta-irradiated cell. Chromosoma. 1958;9(4):319–331. [PubMed] [Google Scholar]
  7. Bajer A. S., Molè-Bajer J. Asters, poles, and transport properties within spindlelike microtubule arrays. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):263–283. doi: 10.1101/sqb.1982.046.01.029. [DOI] [PubMed] [Google Scholar]
  8. Bajer A. S., Molè-Bajer J. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. J Cell Biol. 1986 Jan;102(1):263–281. doi: 10.1083/jcb.102.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bajer A. S., Vantard M. Microtubule dynamics determine chromosome lagging and transport of acentric fragments. Mutat Res. 1988 Oct;201(2):271–281. doi: 10.1016/0027-5107(88)90016-4. [DOI] [PubMed] [Google Scholar]
  10. Carpenter A. T. Distributive segregation: motors in the polar wind? Cell. 1991 Mar 8;64(5):885–890. doi: 10.1016/0092-8674(91)90313-n. [DOI] [PubMed] [Google Scholar]
  11. Cassimeris L., Rieder C. L., Salmon E. D. Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression. J Cell Sci. 1994 Jan;107(Pt 1):285–297. doi: 10.1242/jcs.107.1.285. [DOI] [PubMed] [Google Scholar]
  12. De Mey J., Lambert A. M., Bajer A. S., Moeremans M., De Brabander M. Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1898–1902. doi: 10.1073/pnas.79.6.1898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fuller M. T. Riding the polar winds: chromosomes motor down east. Cell. 1995 Apr 7;81(1):5–8. doi: 10.1016/0092-8674(95)90364-x. [DOI] [PubMed] [Google Scholar]
  15. Hard R., Allen R. D. Behaviour of kinetochore fibres in Haemanthus katherinae during anaphase movements of chromosomes. J Cell Sci. 1977;27:47–56. doi: 10.1242/jcs.27.1.47. [DOI] [PubMed] [Google Scholar]
  16. Inoué S., Salmon E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell. 1995 Dec;6(12):1619–1640. doi: 10.1091/mbc.6.12.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu B., Joshi H. C., Wilson T. J., Silflow C. D., Palevitz B. A., Snustad D. P. gamma-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell. 1994 Feb;6(2):303–314. doi: 10.1105/tpc.6.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu B., Marc J., Joshi H. C., Palevitz B. A. A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci. 1993 Apr;104(Pt 4):1217–1228. doi: 10.1242/jcs.104.4.1217. [DOI] [PubMed] [Google Scholar]
  19. MOLE-BAJER J. Cine-micrographic analysis of C-mitosis in endosperm. Chromosoma. 1958;9(4):332–358. doi: 10.1007/BF02568085. [DOI] [PubMed] [Google Scholar]
  20. McIntosh J. R., Hering G. E. Spindle fiber action and chromosome movement. Annu Rev Cell Biol. 1991;7:403–426. doi: 10.1146/annurev.cb.07.110191.002155. [DOI] [PubMed] [Google Scholar]
  21. McIntosh J. R., Pfarr C. M. Mitotic motors. J Cell Biol. 1991 Nov;115(3):577–585. doi: 10.1083/jcb.115.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McKim K. S., Hawley R. S. Chromosomal control of meiotic cell division. Science. 1995 Dec 8;270(5242):1595–1601. doi: 10.1126/science.270.5242.1595. [DOI] [PubMed] [Google Scholar]
  23. Minshull J., Pines J., Golsteyn R., Standart N., Mackie S., Colman A., Blow J., Ruderman J. V., Wu M., Hunt T. The role of cyclin synthesis, modification and destruction in the control of cell division. J Cell Sci Suppl. 1989;12:77–97. doi: 10.1242/jcs.1989.supplement_12.8. [DOI] [PubMed] [Google Scholar]
  24. Mitchison T. J. Mitosis: basic concepts. Curr Opin Cell Biol. 1989 Feb;1(1):67–74. doi: 10.1016/s0955-0674(89)80039-0. [DOI] [PubMed] [Google Scholar]
  25. Mitchison T. J., Salmon E. D. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Cell Biol. 1992 Nov;119(3):569–582. doi: 10.1083/jcb.119.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Molé-Bajer J. Chromosome movements in chloral hydrate treated endosperm cells in vitro. Chromosoma. 1967;22(4):465–480. doi: 10.1007/BF00286548. [DOI] [PubMed] [Google Scholar]
  27. Murphy T. D., Karpen G. H. Interactions between the nod+ kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila minichromosome. Cell. 1995 Apr 7;81(1):139–148. doi: 10.1016/0092-8674(95)90378-x. [DOI] [PubMed] [Google Scholar]
  28. Murray A. Cell cycle checkpoints. Curr Opin Cell Biol. 1994 Dec;6(6):872–876. doi: 10.1016/0955-0674(94)90059-0. [DOI] [PubMed] [Google Scholar]
  29. OSTERGREN G., MOLE-BAJER J., BAJER A. An interpretation of transport phenomena at mitosis. Ann N Y Acad Sci. 1960 Oct 7;90:381–408. doi: 10.1111/j.1749-6632.1960.tb23258.x. [DOI] [PubMed] [Google Scholar]
  30. Puszkin S., Berl S. Actin-like properties of colchicine binding protein isolated from brain. Nature. 1970 Feb 7;225(5232):558–559. doi: 10.1038/225558a0. [DOI] [PubMed] [Google Scholar]
  31. Rieder C. L., Cole R. W., Khodjakov A., Sluder G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol. 1995 Aug;130(4):941–948. doi: 10.1083/jcb.130.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rieder C. L., Davison E. A., Jensen L. C., Cassimeris L., Salmon E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J Cell Biol. 1986 Aug;103(2):581–591. doi: 10.1083/jcb.103.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rieder C. L. Formation of the astral mitotic spindle: ultrastructural basis for the centrosome-kinetochore interaction. Electron Microsc Rev. 1990;3(2):269–300. doi: 10.1016/0892-0354(90)90005-d. [DOI] [PubMed] [Google Scholar]
  34. Rieder C. L., Salmon E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol. 1994 Feb;124(3):223–233. doi: 10.1083/jcb.124.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sawin K. E., Endow S. A. Meiosis, mitosis and microtubule motors. Bioessays. 1993 Jun;15(6):399–407. doi: 10.1002/bies.950150606. [DOI] [PubMed] [Google Scholar]
  36. Sawin K. E., Mitchison T. J. Microtubule flux in mitosis is independent of chromosomes, centrosomes, and antiparallel microtubules. Mol Biol Cell. 1994 Feb;5(2):217–226. doi: 10.1091/mbc.5.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Skibbens R. V., Rieder C. L., Salmon E. D. Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension. J Cell Sci. 1995 Jul;108(Pt 7):2537–2548. doi: 10.1242/jcs.108.7.2537. [DOI] [PubMed] [Google Scholar]
  38. Skibbens R. V., Skeen V. P., Salmon E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol. 1993 Aug;122(4):859–875. doi: 10.1083/jcb.122.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smirnova E. A., Bajer A. S. Spindle poles in higher plant mitosis. Cell Motil Cytoskeleton. 1992;23(1):1–7. doi: 10.1002/cm.970230102. [DOI] [PubMed] [Google Scholar]
  40. Vantard M., Levilliers N., Hill A. M., Adoutte A., Lambert A. M. Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8825–8829. doi: 10.1073/pnas.87.22.8825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Verde F., Berrez J. M., Antony C., Karsenti E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J Cell Biol. 1991 Mar;112(6):1177–1187. doi: 10.1083/jcb.112.6.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vernos I., Karsenti E. Chromosomes take the lead in spindle assembly. Trends Cell Biol. 1995 Aug;5(8):297–301. doi: 10.1016/s0962-8924(00)89045-5. [DOI] [PubMed] [Google Scholar]
  43. Vernos I., Raats J., Hirano T., Heasman J., Karsenti E., Wylie C. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell. 1995 Apr 7;81(1):117–127. doi: 10.1016/0092-8674(95)90376-3. [DOI] [PubMed] [Google Scholar]
  44. Wang S. Z., Adler R. Chromokinesin: a DNA-binding, kinesin-like nuclear protein. J Cell Biol. 1995 Mar;128(5):761–768. doi: 10.1083/jcb.128.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES