Abstract
In a number of embryonic systems, centrosomes that have lost their association with the nuclear envelope and spindle maintain their ability to duplicate and induce astral microtubules. To identify additional activities of free centrosomes, we monitored astral microtubule dynamics by injecting living syncytial Drosophila embryos with fluorescently labeled tubulin. Our recordings follow multiple rounds of free centrosome duplication and separation during the cortical division. The rate and distance of free sister centrosome separation corresponds well with the initial phase of associated centrosome separation. However, the later phase of separation observed for centrosomes associated with a spindle (anaphase B) does not occur. Free centrosome separation regularly occurs on a plane parallel to the plasma membrane. While previous work demonstrated that centrosomes influence cytoskeletal dynamics, this observation suggests that the cortical cytoskeleton regulates the orientation of centrosome separation. Although free centrosomes do not form spindles, they display relatively normal cell cycle-dependent modulations of their astral microtubules. In addition, free centrosome duplication, separation, and modulation of microtubule dynamics often occur in synchrony with neighboring associated centrosomes. These observations suggest that free centrosomes respond normally to local nuclear division signals. Disruption of the cortical nuclear divisions with aphidicolin supports this conclusion; large numbers of abnormal nuclei recede into the interior while their centrosomes remain on the cortex. Following individual free centrosomes through multiple focal planes for 45 min after the injection of aphidicolin reveals that they do not undergo normal modulation of their astral dynamics nor do they undergo multiple rounds of duplication and separation. We conclude that in the absence of normally dividing cortical nuclei many centrosome activities are disrupted and centrosome duplication is extensively delayed. This indicates the presence of a feedback mechanism that creates a dependency relationship between the cortical nuclear cycles and the centrosome cycles.
Full Text
The Full Text of this article is available as a PDF (6.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aist J. R., Liang H., Berns M. W. Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J Cell Sci. 1993 Apr;104(Pt 4):1207–1216. doi: 10.1242/jcs.104.4.1207. [DOI] [PubMed] [Google Scholar]
- Bailly E., Pines J., Hunter T., Bornens M. Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistant compartment and with the centrosome. J Cell Sci. 1992 Mar;101(Pt 3):529–545. doi: 10.1242/jcs.101.3.529. [DOI] [PubMed] [Google Scholar]
- Buendia B., Bré M. H., Griffiths G., Karsenti E. Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. J Cell Biol. 1990 Apr;110(4):1123–1135. doi: 10.1083/jcb.110.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callaini G., Riparbelli M. G. Involvement of microtubules and microfilaments in centrosome dynamics during the syncytial mitoses of the early Drosophila embryo. Exp Cell Res. 1992 Jul;201(1):241–244. doi: 10.1016/0014-4827(92)90369-j. [DOI] [PubMed] [Google Scholar]
- Dasso M., Newport J. W. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell. 1990 Jun 1;61(5):811–823. doi: 10.1016/0092-8674(90)90191-g. [DOI] [PubMed] [Google Scholar]
- Debec A., Montmory C. Cyclin B is associated with centrosomes in Drosophila mitotic cells. Biol Cell. 1992;75(2):121–126. doi: 10.1016/0248-4900(92)90131-j. [DOI] [PubMed] [Google Scholar]
- Euteneuer U., Schliwa M. Evidence for an involvement of actin in the positioning and motility of centrosomes. J Cell Biol. 1985 Jul;101(1):96–103. doi: 10.1083/jcb.101.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foe V. E., Alberts B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci. 1983 May;61:31–70. doi: 10.1242/jcs.61.1.31. [DOI] [PubMed] [Google Scholar]
- Fogarty P., Kalpin R. F., Sullivan W. The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13. Development. 1994 Aug;120(8):2131–2142. doi: 10.1242/dev.120.8.2131. [DOI] [PubMed] [Google Scholar]
- Freeman M., Glover D. M. The gnu mutation of Drosophila causes inappropriate DNA synthesis in unfertilized and fertilized eggs. Genes Dev. 1987 Nov;1(9):924–930. doi: 10.1101/gad.1.9.924. [DOI] [PubMed] [Google Scholar]
- Freeman M., Nüsslein-Volhard C., Glover D. M. The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell. 1986 Aug 1;46(3):457–468. doi: 10.1016/0092-8674(86)90666-5. [DOI] [PubMed] [Google Scholar]
- Gard D. L., Hafezi S., Zhang T., Doxsey S. J. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Cell Biol. 1990 Jun;110(6):2033–2042. doi: 10.1083/jcb.110.6.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonzalez C., Saunders R. D., Casal J., Molina I., Carmena M., Ripoll P., Glover D. M. Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts. J Cell Sci. 1990 Aug;96(Pt 4):605–616. doi: 10.1242/jcs.96.4.605. [DOI] [PubMed] [Google Scholar]
- Hara K., Tydeman P., Kirschner M. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc Natl Acad Sci U S A. 1980 Jan;77(1):462–466. doi: 10.1073/pnas.77.1.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
- Kalt A., Schliwa M. Molecular components of the centrosome. Trends Cell Biol. 1993 Apr;3(4):118–128. doi: 10.1016/0962-8924(93)90174-y. [DOI] [PubMed] [Google Scholar]
- Karr T. L., Alberts B. M. Organization of the cytoskeleton in early Drosophila embryos. J Cell Biol. 1986 Apr;102(4):1494–1509. doi: 10.1083/jcb.102.4.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karsenti E., Newport J., Hubble R., Kirschner M. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J Cell Biol. 1984 May;98(5):1730–1745. doi: 10.1083/jcb.98.5.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellogg D. R., Field C. M., Alberts B. M. Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo. J Cell Biol. 1989 Dec;109(6 Pt 1):2977–2991. doi: 10.1083/jcb.109.6.2977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellogg D. R., Mitchison T. J., Alberts B. M. Behaviour of microtubules and actin filaments in living Drosophila embryos. Development. 1988 Aug;103(4):675–686. doi: 10.1242/dev.103.4.675. [DOI] [PubMed] [Google Scholar]
- Kellogg D. R., Moritz M., Alberts B. M. The centrosome and cellular organization. Annu Rev Biochem. 1994;63:639–674. doi: 10.1146/annurev.bi.63.070194.003231. [DOI] [PubMed] [Google Scholar]
- Kimelman D., Kirschner M., Scherson T. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell. 1987 Feb 13;48(3):399–407. doi: 10.1016/0092-8674(87)90191-7. [DOI] [PubMed] [Google Scholar]
- Kuriyama R. 225-Kilodalton phosphoprotein associated with mitotic centrosomes in sea urchin eggs. Cell Motil Cytoskeleton. 1989;12(2):90–103. doi: 10.1002/cm.970120204. [DOI] [PubMed] [Google Scholar]
- Maldonado-Codina G., Glover D. M. Cyclins A and B associate with chromatin and the polar regions of spindles, respectively, and do not undergo complete degradation at anaphase in syncytial Drosophila embryos. J Cell Biol. 1992 Feb;116(4):967–976. doi: 10.1083/jcb.116.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messinger S. M., Albertini D. F. Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte. J Cell Sci. 1991 Oct;100(Pt 2):289–298. doi: 10.1242/jcs.100.2.289. [DOI] [PubMed] [Google Scholar]
- Miller K. G., Field C. M., Alberts B. M. Actin-binding proteins from Drosophila embryos: a complex network of interacting proteins detected by F-actin affinity chromatography. J Cell Biol. 1989 Dec;109(6 Pt 1):2963–2975. doi: 10.1083/jcb.109.6.2963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minden J. S., Agard D. A., Sedat J. W., Alberts B. M. Direct cell lineage analysis in Drosophila melanogaster by time-lapse, three-dimensional optical microscopy of living embryos. J Cell Biol. 1989 Aug;109(2):505–516. doi: 10.1083/jcb.109.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchison T. J., Sedat J. Localization of antigenic determinants in whole Drosophila embryos. Dev Biol. 1983 Sep;99(1):261–264. doi: 10.1016/0012-1606(83)90275-0. [DOI] [PubMed] [Google Scholar]
- Nagano H., Hirai S., Okano K., Ikegami S. Achromosomal cleavage of fertilized starfish eggs in the presence of aphidicolin. Dev Biol. 1981 Jul 30;85(2):409–415. doi: 10.1016/0012-1606(81)90272-4. [DOI] [PubMed] [Google Scholar]
- Nislow C., Lombillo V. A., Kuriyama R., McIntosh J. R. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature. 1992 Oct 8;359(6395):543–547. doi: 10.1038/359543a0. [DOI] [PubMed] [Google Scholar]
- Oakley B. R., Oakley C. E., Yoon Y., Jung M. K. Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell. 1990 Jun 29;61(7):1289–1301. doi: 10.1016/0092-8674(90)90693-9. [DOI] [PubMed] [Google Scholar]
- Ohta K., Shiina N., Okumura E., Hisanaga S., Kishimoto T., Endo S., Gotoh Y., Nishida E., Sakai H. Microtubule nucleating activity of centrosomes in cell-free extracts from Xenopus eggs: involvement of phosphorylation and accumulation of pericentriolar material. J Cell Sci. 1993 Jan;104(Pt 1):125–137. doi: 10.1242/jcs.104.1.125. [DOI] [PubMed] [Google Scholar]
- Palmer R. E., Sullivan D. S., Huffaker T., Koshland D. Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J Cell Biol. 1992 Nov;119(3):583–593. doi: 10.1083/jcb.119.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raff J. W., Glover D. M. Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell. 1989 May 19;57(4):611–619. doi: 10.1016/0092-8674(89)90130-x. [DOI] [PubMed] [Google Scholar]
- Raff J. W., Glover D. M. Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J Cell Biol. 1988 Dec;107(6 Pt 1):2009–2019. doi: 10.1083/jcb.107.6.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. D., Biggins S., Satterwhite L. L. Unravelling the tangled web at the microtubule-organizing center. Curr Opin Cell Biol. 1993 Feb;5(1):105–115. doi: 10.1016/s0955-0674(05)80015-8. [DOI] [PubMed] [Google Scholar]
- Schatten H., Walter M., Biessmann H., Schatten G. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis. Cell Motil Cytoskeleton. 1988;11(4):248–259. doi: 10.1002/cm.970110404. [DOI] [PubMed] [Google Scholar]
- Shamanski F. L., Orr-Weaver T. L. The Drosophila plutonium and pan gu genes regulate entry into S phase at fertilization. Cell. 1991 Sep 20;66(6):1289–1300. doi: 10.1016/0092-8674(91)90050-9. [DOI] [PubMed] [Google Scholar]
- Sluder G., Lewis K. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs. J Exp Zool. 1987 Oct;244(1):89–100. doi: 10.1002/jez.1402440111. [DOI] [PubMed] [Google Scholar]
- Sluder G., Miller F. J., Cole R., Rieder C. L. Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control. J Cell Biol. 1990 Jun;110(6):2025–2032. doi: 10.1083/jcb.110.6.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sluder G., Miller F. J., Rieder C. L. The reproduction of centrosomes: nuclear versus cytoplasmic controls. J Cell Biol. 1986 Nov;103(5):1873–1881. doi: 10.1083/jcb.103.5.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sluder G., Rieder C. L. Centriole number and the reproductive capacity of spindle poles. J Cell Biol. 1985 Mar;100(3):887–896. doi: 10.1083/jcb.100.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stafstrom J. P., Staehelin L. A. Dynamics of the nuclear envelope and of nuclear pore complexes during mitosis in the Drosophila embryo. Eur J Cell Biol. 1984 May;34(1):179–189. [PubMed] [Google Scholar]
- Sullivan W., Daily D. R., Fogarty P., Yook K. J., Pimpinelli S. Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo. Mol Biol Cell. 1993 Sep;4(9):885–896. doi: 10.1091/mbc.4.9.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan W., Fogarty P., Theurkauf W. Mutations affecting the cytoskeletal organization of syncytial Drosophila embryos. Development. 1993 Aug;118(4):1245–1254. doi: 10.1242/dev.118.4.1245. [DOI] [PubMed] [Google Scholar]
- Sullivan W., Minden J. S., Alberts B. M. daughterless-abo-like, a Drosophila maternal-effect mutation that exhibits abnormal centrosome separation during the late blastoderm divisions. Development. 1990 Oct;110(2):311–323. doi: 10.1242/dev.110.2.311. [DOI] [PubMed] [Google Scholar]
- Theurkauf W. E. Behavior of structurally divergent alpha-tubulin isotypes during Drosophila embryogenesis: evidence for post-translational regulation of isotype abundance. Dev Biol. 1992 Nov;154(1):205–217. doi: 10.1016/0012-1606(92)90060-t. [DOI] [PubMed] [Google Scholar]
- Turner F. R., Mahowald A. P. Scanning electron microscopy of Drosophila embryogenesis. 1. The structure of the egg envelopes and the formation of the cellular blastoderm. Dev Biol. 1976 May;50(1):95–108. doi: 10.1016/0012-1606(76)90070-1. [DOI] [PubMed] [Google Scholar]
- Vessey K. B., Ludwiczak R. L., Briot A. S., Underwood E. M. abnormal chromatin (abc), a maternal-effect locus in Drosophila melanogaster. J Cell Sci. 1991 Feb;98(Pt 2):233–243. doi: 10.1242/jcs.98.2.233. [DOI] [PubMed] [Google Scholar]
- Warn R. M., Flegg L., Warn A. An investigation of microtubule organization and functions in living Drosophila embryos by injection of a fluorescently labeled antibody against tyrosinated alpha-tubulin. J Cell Biol. 1987 Oct;105(4):1721–1730. doi: 10.1083/jcb.105.4.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warn R. M., Warn A. Microtubule arrays present during the syncytial and cellular blastoderm stages of the early Drosophila embryo. Exp Cell Res. 1986 Mar;163(1):201–210. doi: 10.1016/0014-4827(86)90573-2. [DOI] [PubMed] [Google Scholar]
- Waters J. C., Cole R. W., Rieder C. L. The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster. J Cell Biol. 1993 Jul;122(2):361–372. doi: 10.1083/jcb.122.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitfield W. G., Millar S. E., Saumweber H., Frasch M., Glover D. M. Cloning of a gene encoding an antigen associated with the centrosome in Drosophila. J Cell Sci. 1988 Apr;89(Pt 4):467–480. doi: 10.1242/jcs.89.4.467. [DOI] [PubMed] [Google Scholar]
- Yasuda G. K., Baker J., Schubiger G. Independent roles of centrosomes and DNA in organizing the Drosophila cytoskeleton. Development. 1991 Feb;111(2):379–391. doi: 10.1242/dev.111.2.379. [DOI] [PubMed] [Google Scholar]
- Zheng Y., Wong M. L., Alberts B., Mitchison T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature. 1995 Dec 7;378(6557):578–583. doi: 10.1038/378578a0. [DOI] [PubMed] [Google Scholar]